66 research outputs found
A wearable headset for monitoring electromyography responses within spinal surgery
Purpose: This research examines an approach for enhancing the efficiency of spinal surgery utilising the technological capabilities and design functionalities of wearable headsets, in this case Google Glass. The aim was to improve the efficiency of the selective dorsal rhizotomy neurosurgical procedure initially through the use of Glass via an innovative approach to information design for an intraoperative monitoring display. Methods Utilising primary and secondary research methods the development of a new electromyography response display for a wearable headset was undertaken. Results: Testing proved that Glass was fit for purpose and that the new intraoperative monitor design provided an example platform for the innovative intraoperative monitoring display; however, alternative wearable headsets such as the Microsoft HoloLens could also be equally viable. Conclusion: The new display design combined with the appropriate wearable technology could greatly benefit the selective dorsal rhizotomy procedure
Giant vortex state in perforated aluminum microsquares
We investigate the nucleation of superconductivity in a uniform perpendicular
magnetic field H in aluminum microsquares containing a few (2 and 4) submicron
holes (antidots). The normal/superconducting phase boundary T_c(H) of these
structures shows a quite different behavior in low and high fields. In the low
magnetic field regime fluxoid quantization around each antidot leads to
oscillations in T_c(H), expected from the specific sample geometry, and
reminiscent of the network behavior. In high magnetic fields, the T_c(H)
boundaries of the perforated and a reference non-perforated microsquare reveal
cusps at the same values of Phi/Phi_0 (where Phi is the applied flux threading
the total square area and Phi_0 is the superconducting flux quantum), while the
background on T_c(H) becomes quasi-linear, indicating that a giant vortex state
is established. The influence of the actual geometries on T_c(H) is analyzed in
the framework of the linearized Ginzburg-Landau theory.Comment: 14 pages, 6 PS figures, RevTex, accepted for publication in Phys.
Rev.
Firm preparation for ISO 9001 certification: the case of the hotel industry in Portugal
The purpose of this study is to assess whether companies conduct preparations, such as managing culture, before starting to implement an ISO 9001 Quality Management System (QMS). Based on a literature review, the paper develops a model of firm preparation for ISO 9001 certification and several research hypotheses. The survey research method adopted consists of data collection through questionnaires – sent to hotels of four and five stars, in Portugal, in two different moments (2012 and 2014) – and of a longitudinal data analysis based on non-parametric statistical tests. Results show that the majority of companies conduct preparations before starting to implement an ISO 9001 QMS. However, most companies do not assess their initial situation, nor do they plan for the preparations. One of the significant implications from this research is that a more coherent and integrated approach in ISO 9001 preparation is required. Other implications for practice and for research are also noted. This is the first study, as far as the authors are aware of, that addresses the topic of planning for the preparations that a company can make before starting to implement an ISO 9001 QMS.Fundação para a Ciência e a Tecnologia (grant UID/ECO/04007/2013) e FEDER/COMPETE (POCI-01-0145-
FEDER-007659)info:eu-repo/semantics/publishedVersio
Impairment of Adolescent Hippocampal Plasticity in a Mouse Model for Alzheimer's Disease Precedes Disease Phenotype
The amyloid precursor protein (APP) was assumed to be an important neuron-morphoregulatory protein and plays a central role in Alzheimer's disease (AD) pathology. In the study presented here, we analyzed the APP-transgenic mouse model APP23 using 2-dimensional gel electrophoresis technology in combination with DIGE and mass spectrometry. We investigated cortex and hippocampus of transgenic and wildtype mice at 1, 2, 7 and 15 months of age. Furthermore, cortices of 16 days old embryos were analyzed. When comparing the protein patterns of APP23 with wildtype mice, we detected a relatively large number of altered protein spots at all age stages and brain regions examined which largely preceded the occurrence of amyloid plaques. Interestingly, in hippocampus of adolescent, two-month old mice, a considerable peak in the number of protein changes was observed. Moreover, when protein patterns were compared longitudinally between age stages, we found that a large number of proteins were altered in wildtype mice. Those alterations were largely absent in hippocampus of APP23 mice at two months of age although not in other stages compared. Apparently, the large difference in the hippocampal protein patterns between two-month old APP23 and wildtype mice was caused by the absence of distinct developmental changes in the hippocampal proteome of APP23 mice. In summary, the absence of developmental proteome alterations as well as a down-regulation of proteins related to plasticity suggest the disturption of a normally occurring peak of hippocampal plasticity during adolescence in APP23 mice. Our findings are in line with the observation that AD is preceded by a clinically silent period of several years to decades. We also demonstrate that it is of utmost importance to analyze different brain regions and different age stages to obtain information about disease-causing mechanisms
Management control systems in innovation companies: A literature based framework
Past research has traditionally argued that management control systems (MCSs) may present a hindrance to the creativity of innovation companies. This theoretical paper surveys the literature to focus an investigation on the MCSs of innovation companies. Within the object of control paradigm the paper develops and presents a theoretical model of the impact of eleven external, organisational and innovation related contingency factors on the MCSs in companies that engage in innovation activities. We also suggest measures for further empirical research. By formulating hypotheses on 43 potential interactions the model predicts contradictory influences on two direct control categories, results and action control, but stresses the importance of two indirect categories, personnel and cultural control. More specifically, the high levels of technological complexity and innovation capability in this type of company are expected to be negatively associated with the application of results and action control, whereas personnel and cultural seem to be more appropriate. Furthermore, important sources of finance, venture capital and public funding, are both hypothesised to be positively associated with the application of results, action and personnel control; whereas only public funding is predicted to be positively related to the application of cultural control. The principal contribution of this paper lies in synthesising the literature to provide a model of the impact of a unique set of eleven contingency factors for innovation companies on a broad scope of controls. In addition, the contingency model, if empirically validated, would add value by inferring the particular forms of management control which would be beneficial in innovative company settings. © 2014 Springer-Verlag Berlin Heidelberg
#EEGManyLabs: Investigating the Replicability of Influential EEG Experiments
There is growing awareness across the neuroscience community that the replicability of findings about the relationship between brain activity and cognitive phenomena can be improved by conducting studies with high statistical power that adhere to well-defined and standardised analysis pipelines. Inspired by recent efforts from the psychological sciences, and with the desire to examine some of the foundational findings using electroencephalography (EEG), we have launched #EEGManyLabs, a large-scale international collaborative replication effort. Since its discovery in the early 20th century, EEG has had a profound influence on our understanding of human cognition, but there is limited evidence on the replicability of some of the most highly cited discoveries. After a systematic search and selection process, we have identified 27 of the most influential and continually cited studies in the field. We plan to directly test the replicability of key findings from 20 of these studies in teams of at least three independent laboratories. The design and protocol of each replication effort will be submitted as a Registered Report and peer-reviewed prior to data collection. Prediction markets, open to all EEG researchers, will be used as a forecasting tool to examine which findings the community expects to replicate. This project will update our confidence in some of the most influential EEG findings and generate a large open access database that can be used to inform future research practices. Finally, through this international effort, we hope to create a cultural shift towards inclusive, high-powered multi-laboratory collaborations. © 2021 The Authors
#EEGManyLabs: Investigating the replicability of influential EEG experiments
There is growing awareness across the neuroscience community that the replicability of findings about the relationship between brain activity and cognitive phenomena can be improved by conducting studies with high statistical power that adhere to well-defined and standardised analysis pipelines. Inspired by recent efforts from the psychological sciences, and with the desire to examine some of the foundational findings using electroencephalography (EEG), we have launched #EEGManyLabs, a large-scale international collaborative replication effort. Since its discovery in the early 20th century, EEG has had a profound influence on our understanding of human cognition, but there is limited evidence on the replicability of some of the most highly cited discoveries. After a systematic search and selection process, we have identified 27 of the most influential and continually cited studies in the field. We plan to directly test the replicability of key findings from 20 of these studies in teams of at least three independent laboratories. The design and protocol of each replication effort will be submitted as a Registered Report and peer-reviewed prior to data collection. Prediction markets, open to all EEG researchers, will be used as a forecasting tool to examine which findings the community expects to replicate. This project will update our confidence in some of the most influential EEG findings and generate a large open access database that can be used to inform future research practices. Finally, through this international effort, we hope to create a cultural shift towards inclusive, high-powered multi-laboratory collaborations
- …