47 research outputs found

    Migration Dynamics for the Ideal Free Distribution

    Get PDF
    This article verifies that the ideal free distribution (IFD) is evolutionarily stable, provided the payoff in each patch decreases with an increasing number of individuals. General frequency-dependent models of migratory dynamics that differ in the degree of animal omniscience are then developed. These models do not exclude migration at the IFD where balanced dispersal emerges. It is shown that the population distribution converges to the IFD even when animals are nonideal (i.e., they do not know the quality of all patches). In particular, the IFD emerges when animals never migrate from patches with a higher payoff to patches with a lower payoff and when some animals always migrate to the best patch. It is shown that some random migration does not necessarily lead to undermatching, provided migration occurs at the IFD. The effect of population dynamics on the IFD (and vice versa) is analyzed. Without any migration, it is shown that population dynamics alone drive the population distribution to the IFD. If animal migration tends (for each fixed population size) to the IFD, then the combined migrationpopulation dynamics evolve to the population IFD independent of the two timescales (i.e., behavioral vs. population)

    Ideal Free Distributions, Evolutionary Games, and Population Dynamics in Multiple-Species Environments

    Get PDF
    In this article, we develop population game theory, a theory that combines the dynamics of animal behavior with population dynamics. In particular, we study interaction and distribution of two species in a two-patch environment assuming that individuals behave adaptively (i.e., they maximize Darwinian fitness). Either the two species are competing for resources or they are in a predator-prey relationship. Using some recent advances in evolutionary game theory, we extend the classical ideal free distribution (IFD) concept for single species to two interacting species. We study population dynamical consequences of two-species IFD by comparing two systems: one where individuals cannot migrate between habitats and one where migration is possible. For single species, predator-prey interactions, and competing species, we show that these two types of behavior lead to the same population equilibria and corresponding species spatial distributions, provided interspecific competition is patch independent. However, if differences between patches are such that competition is patch dependent, then our predictions strongly depend on whether animals can migrate or not. In particular, we show that when species are settled at their equilibrium population densities in both habitats in the environment where migration between habitats is blocked, then the corresponding species spatial distribution need not be an IFD. Thus, when species are given the opportunity to migrate, they will redistribute to reach an IFD (e.g., under which the two species can completely segregate), and this redistribution will also influence species population equilibrial densities. Alternatively, we also show that when two species are distributed according to the IFD, the corresponding population equilibrium can be unstable

    The Role of Behavioral Dynamics in Determining the Patch Distributions of Interacting Species

    Get PDF
    The effect of the behavioral dynamics of movement on the population dynamics of interacting species in multipatch systems is studied. The behavioral dynamics of habitat choice used in a range of previous models are reviewed. There is very limited empirical evidence for distinguishing between these different models, but they differ in important ways, and many lack properties that would guarantee stability of an ideal free distribution in a single-species system. The importance of finding out more about movement dynamics in multispecies systems is shown by an analysis of the effect of movement rules on the dynamics of a particular two-species–two-patch model of competition, where the population dynamical equilibrium in the absence of movement is often not a behavioral equilibrium in the presence of adaptive movement. The population dynamics of this system are explored for several different movement rules and different parameter values, producing a variety of outcomes. Other systems of interacting species that may lack a dynamically stable distribution among patches are discussed, and it is argued that such systems are not rare. The sensitivity of community properties to individual movement behavior in this and earlier studies argues that there is a great need for empirical investigation to determine the applicability of different models of the behavioral dynamics of habitat selection

    Migration Dynamics for the Ideal Free Distribution

    Full text link

    Does Sex-Selective Predation Stabilize or Destabilize Predator-Prey Dynamics?

    Get PDF
    Background: Little is known about the impact of prey sexual dimorphism on predator-prey dynamics and the impact of sexselective harvesting and trophy hunting on long-term stability of exploited populations. Methodology and Principal Findings: We review the quantitative evidence for sex-selective predation and study its longterm consequences using several simple predator-prey models. These models can be also interpreted in terms of feedback between harvesting effort and population size of the harvested species under open-access exploitation. Among the 81 predator-prey pairs found in the literature, male bias in predation is 2.3 times as common as female bias. We show that long-term effects of sex-selective predation depend on the interplay of predation bias and prey mating system. Predation on the ‘less limiting’ prey sex can yield a stable predator-prey equilibrium, while predation on the other sex usually destabilizes the dynamics and promotes population collapses. For prey mating systems that we consider, males are less limiting except for polyandry and polyandrogyny, and male-biased predation alone on such prey can stabilize otherwise unstable dynamics. On the contrary, our results suggest that female-biased predation on polygynous, polygynandrous or monogamous prey requires other stabilizing mechanisms to persist. Conclusions and Significance: Our modelling results suggest that the observed skew towards male-biased predation might reflect, in addition to sexual selection, the evolutionary history of predator-prey interactions. More focus on these phenomena can yield additional and interesting insights as to which mechanisms maintain the persistence of predator-prey pairs over ecological and evolutionary timescales. Our results can also have implications for long-term sustainability of harvesting and trophy hunting of sexually dimorphic species

    What is viability theory

    No full text

    Teorie evolučních her a dynamika populací

    No full text
    The book surveys results of evolutionarily game theory and their applications in biology. It combines the static game theory with population dynamics
    corecore