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abstract: In this article, we develop population game theory, a
theory that combines the dynamics of animal behavior with popu-
lation dynamics. In particular, we study interaction and distribution
of two species in a two-patch environment assuming that individuals
behave adaptively (i.e., they maximize Darwinian fitness). Either the
two species are competing for resources or they are in a predator-
prey relationship. Using some recent advances in evolutionary game
theory, we extend the classical ideal free distribution (IFD) concept
for single species to two interacting species. We study population
dynamical consequences of two-species IFD by comparing two sys-
tems: one where individuals cannot migrate between habitats and
one where migration is possible. For single species, predator-prey
interactions, and competing species, we show that these two types
of behavior lead to the same population equilibria and corresponding
species spatial distributions, provided interspecific competition is
patch independent. However, if differences between patches are such
that competition is patch dependent, then our predictions strongly
depend on whether animals can migrate or not. In particular, we
show that when species are settled at their equilibrium population
densities in both habitats in the environment where migration be-
tween habitats is blocked, then the corresponding species spatial
distribution need not be an IFD. Thus, when species are given the
opportunity to migrate, they will redistribute to reach an IFD (e.g.,
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under which the two species can completely segregate), and this
redistribution will also influence species population equilibrial den-
sities. Alternatively, we also show that when two species are distrib-
uted according to the IFD, the corresponding population equilibrium
can be unstable.

Keywords: adaptive foraging, competition, evolutionarily stable strat-
egy, habitat choice, ideal free distribution, predator-prey, replicator
system.

A central challenge in ecology is to develop models that
faithfully capture those important mechanistic details of
natural systems that are required to make reliable predic-
tions about population dynamics. We have long known
that factors such as food, predators, and the densities of
conspecifics and heterospecifics have important effects on
population dynamics of species. It is also recognized that
these aggregate population characteristics ultimately de-
pend on the behaviors of individuals. The evidence for
these facts comes from two largely independent research
programs: population ecology and evolutionary ecology.
While the basic unit population ecology focuses on is a
population, evolutionary ecology focuses on the individ-
ual. Despite the progress in these two lines of research,
population biologists rarely explicitly integrate the behav-
ior of individuals into their models, and/or evolutionary
ecologists rarely consider the consequences that the in-
dividual behavior they study has on population dynamics.

There is a growing sense that these two independent
lines of research should be integrated in order to develop
a complete understanding of how predators and intra- and
interspecies interactions affect population demography
and dynamics (Rosenzweig 1991; Levin 1992; Werner
1992; Abrams 1995; Sutherland 1996; Fryxell and Lund-
berg 1997; Bolker et al. 2003). Indeed, this integration is
viewed as critical. If the mechanistic details at the level of
individual behavior are key to population dynamics, then
ecologists will have considerable difficulty predicting pop-
ulation and community dynamics using conventional
models that do not account for this added detail.

In this article, we want to illustrate that both research
programs can be integrated within the framework of pop-
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Table 1: Terminology

Behavioral timescale Population timescale

Short-term Long-term
Fast timescale Slow timescale
Game dynamics Population dynamics
Payoff Fitness
Individual Population

ulation game theory. In contrast to classical game theory,
population game theory considers both individual behav-
ior (i.e., individual timescale) and population dynamics
(i.e., population timescale). To show some recent devel-
opments in this direction, we will consider the interplay
between migration in habitat environments and popula-
tion dynamics in multispecies environments. The original
concept of ideal free distribution (IFD; Fretwell and Lucas
1970) considers a single species whose individuals are free
to settle in any habitat and have a complete knowledge
about the quality of each habitat. It is a purely behavioral
concept because it does not consider the effect of changing
population size. If resources are immediately consumed
on their arrival in the system, then Parker (1978) derived
the “input matching rule,” which states that the ratio of
resource input rates “matches” the consumer distribution
across occupied habitats (see also Parker and Stuart 1976;
Milinski and Parker 1991; Sutherland 1996). The concept
of IFD for a single population was also extended to sit-
uations where either consumers and/or resources undergo
population dynamics (Lessells 1995; Křivan 1997; van Baa-
len et al. 2001). It has also been extended to two-species
environments where the two species are either competing
for resources (Lawlor and Maynard Smith 1976; Brown
1990, 1998; Possingham 1992; Grand and Dill 1999; Grand
2002; Guthrie and Moorhead 2002; Křivan and Sirot 2002;
Křivan 2003) or are in the predator-prey interaction (Kři-
van 1997; Křivan and Schmitz 2003).

There is no doubt that the IFD is a game-theoretic con-
cept because the individual fitness depends on the distri-
bution of other con- and heterospecific individuals. The
crucial concept of evolutionary ecology is that of evolu-
tionarily stable strategies (ESS; Maynard Smith 1982). One
aim of this article is then to use the ESS to predict stability
at either the individual or the population timescale level.
We do this by comparing two systems. In one system,
animals do not migrate between patches (i.e., every animal
spends all its lifetime in a single patch) while in the other,
they do migrate. We start to analyze the two-habitat,
single-species system in the framework of evolutionary
game theory. As defined, under the IFD, each individual
must have the same fitness, and no other behavioral type
using a different strategy can do better. From this per-
spective, the above description of an IFD corresponds to
a Nash equilibrium (NE) of the game. However, an NE
may not be stable with respect to either newly arising
invaders that play a different strategy or spatial pertur-
bations in species distribution. Because these basic con-
cepts are similar in many aspects, it is important to show
in which sense, and if at all, the IFD is stable. We do this
at both the individual timescale level and the population
timescale level.

The main conclusion of this single-species analysis is

that the stability of the system is unaffected by individual
behavior (i.e., whether animals stay all their life in a single
habitat or move between the two). This is true for the
single-species habitat selection model even if there are
multiple (i.e., more than two) habitats. This may explain
why the game-theoretic method has received little atten-
tion in the literature where the IFD for single-species hab-
itat systems predominate.

On the other hand, we go on to show that it is important
to know whether an individual spends all of its time in
one habitat or migrates between them when there are two
species. First, we develop the game theory perspective of
IFD for two species that either compete for resources or
are in a predator-prey relation. To define stability of an
IFD, we use the extension of the ESS concept to two species
(Cressman 1992, 2003). Here, we also assume population
densities are fixed.

Of course, ecology is also concerned with population
dynamics. For habitat selection models, it is usually as-
sumed that IFDs are attained on a much faster timescale
than that on which population densities evolve. This allows
one to approximate the population dynamics by assuming
that species’ mean strategies instantaneously track their
IFD given current population densities. This is the ap-
proach that we carry out at the population timescale level
for two-habitat models with either one or two species.

Because we use two different timescales, we use different
terms throughout the article to distinguish between them.
The corresponding vocabulary is given in table 1.

In this article, we develop a firm theoretical foundation
for IFD for two species that either compete for shared
resources or are in predator-prey relation, and we integrate
this behavioral model with models of population dynam-
ics. In particular, we show that for a single species, IFD
is an ESS of a competition game. Then, using a recent
extension of ESS for two types of players, we extend single-
species IFD for two species by defining it as a two-species
ESS. Then, we study population dynamical consequences
of the IFD that allow us to determine whether animal
behavior, which operates on a short timescale, influences
the long-term population dynamics.
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Figure 1: Ideal free distribution (IFD) for a single species in a two-habitat environment. A, Case of low competition ( ) where all individualsM p 2
are in the better patch 1 only; B, case where competition is more severe ( ) and, consequently, both patches are occupied. In both cases, theM p 10
resulting IFD (filled circle) is stable with respect to spatial perturbations. Other parameters: , , , .K p 15 K p 10 r p 1 r p 0.81 2 1 2

Single-Species Habitat Selection

In this section, we consider a single species that has two
possible habitats. The individual fitness depends on the
habitat and the species’ density in it. Because fitness is
often interpreted as reproductive success, we will use the
more neutral game-theoretic term of “individual payoff”
because the underlying dynamic model is based on indi-
viduals adjusting their behavior rather than evolving pop-
ulation densities.

The IFD Is an ESS

Following Křivan and Sirot (2002), we assume that the
payoff in habitat i is a linearly decreasing function of pop-
ulation density

miV p r 1 � , (1)i i( )Ki

where mi is the population density in habitat i, ri is the
intrinsic per capita growth rate in habitat i, and Ki is its
carrying capacity. The total population size in a two-
habitat environment is denoted by M and(p m � m )1 2

the proportion of the population in habitat i is p pi

. The frequency vector , wherem /M p p (p , p ) p �i 1 2 1

will be called the population mean strategy.p p 12

Let us consider an individual that spends proportion
of its lifetime in habitat 1 and in habitat 2. Provided′ ′p p1 2

population densities are fixed, then its payoff in the pop-
ulation with the population mean strategy isp p (p , p )1 2

′ ′ ′V(p ; p) p pV (p ) � (1 � p )V (p ).1 1 1 1 2 2

By definition, an IFD is a strategy for which all current
choices of an individual as to how to partition its time

between the two habitats have the same payoffs and no
other possible choice has a higher payoff. In what follows,
we will assume that the per capita intrinsic population
growth rate in habitat 1 is higher than that in habitat 2
( ). The following IFD was derived by Křivan andr 1 r1 2

Sirot (2002):

r � r1 21 if M ! K1 r1p p1 r K K K (r � r )2 1 1 2 1 2{ � otherwise.
r K � r K (r K � r K )M2 1 1 2 2 1 1 2

(2)

In the first case, payoff in habitat 1 is higher than the
payoff in habitat 2 for all possible population distributions
(fig. 1A) because the competition in patch 1 is low as a
result of low population densities. For higher population
abundances, neither of the two habitats is always better
than the other, and under the IFD, animal payoff in both
habitats must be the same (fig. 1B). This implies that

, which leads to the given populationV (p ) p V (p )1 1 2 1

distribution.
However, the classical IFD definition does not tackle the

problem of stability of the resulting distribution. In fact,
the only equilibrium distributions that are biologically
meaningful are those that are stable with respect to spatial
perturbations. Let us assume that we slightly perturb the
IFD. Assume, for example, that there are more animals in
habitat 1 than correspond to an IFD (i.e., the perturbed
distribution is to the right of the filled circle in fig. 1B).
Then payoff in habitat 2 (dashed line) will be higher than
that in habitat 1, and animals start to move to this habitat.
Thus, the perturbation will decay in time, and the animal
distribution will return to the IFD. A similar argument
shows that if there are more animals in habitat 2 than
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correspond to the IFD, then again animal distribution will
return to the IFD. This verbal argument is denoted in
figure 1 by arrows that indicate the direction of animal
movement, suggesting there is an implicit dynamic un-
derlying the IFD concept.

The above graphical stability argument based on figure
1 corresponds exactly to the notion of evolutionary sta-
bility for a monomorphic population as used in evolu-
tionary game theory (Maynard Smith 1982). Classically,
this theory considers two players that directly interact (e.g.,
the hawk-dove game; Maynard Smith 1982). However, un-
like the standard interpretation of this game, we do not
assume individuals compete directly with each other in
pairwise interactions (for instance, individuals in different
habitats cannot compete this way). Instead, we follow the
“playing-the-field” approach of Maynard Smith (1982),
where individuals “play” against the population mean
strategy. In general, a distribution p is an ESS if there is
no other strategy that provides a better payoff in the′p
environment where all individuals use strategy p (i.e., p
satisfies the NE condition ) and this′V(p ; p) ≤ V(p; p)
strategy is stable with respect to mutants that provide the
same fitness (Maynard Smith 1982)

′ ′ ′V(p ; p ) ! V(p; p ) (3)

whenever and . In other words,′ ′V(p ; p) p V(p; p) p ( p
the second condition in inequality (3) asserts that any
alternative best response to the resident strategy p must′p
do worse against itself than the resident does. In fact, an
equivalent definition of an ESS (Hofbauer and Sigmund
1998) ignores the equilibrium condition and asserts that
inequality (3) is true only for all strategies close to p.′p
For a single-species, two-habitat game, the strategy given
by equation (2) is evolutionarily stable independently of
population density. For instance, when ,M 1 K (r � r )/r1 1 2 1

′ ′ ′V(p ; p ) � V(p; p ) p

′ ′ 2{�K K r � K Mp r � K [K � M(p � 1)]r }1 2 1 2 1 1 1 2 1 2� ! 0.
K K M(K r � K r )1 2 2 1 1 2

Analogous results also hold for more than two habitats so
that the IFD continues to be an ESS. In fact, for single-
species habitat selection models, it is not necessary to check
inequality (3) because every NE is automatically an ESS.
This is a special property of games corresponding to the
single-species habitat selection model that does not gen-
eralize to two species as we will see later on. In conclusion,
we have shown that for the two-habitat, single-species
model, the IFD is equivalent to the ESS. In particular, the
IFD is stable with respect to spatial perturbations.

IFD Dynamics

So far, we have defined the IFD as a game-theoretical
concept that associates to any fixed population density a
corresponding species spatial distribution. The IFD as-
sumes that individuals are omniscient and they are com-
pletely free to move between patches, but even under these
assumptions, it is clear that reaching the IFD is not im-
mediate but takes some time. In fact, it is the trajectories
of the actual distributions that are observed in practice
because these describe the distribution of individuals be-
tween the habitats at a given time. Therefore, it is of in-
terest to describe the time evolution of species distribu-
tions. To do this, we need to define strategy dynamics that
drive, from any initial species distribution between the two
patches, the animal distributions to the corresponding
IFD.

The standard game-theoretic dynamics (Maynard Smith
1982) are the replicator dynamics that, for a single species,
take the form

dpi p p (V � V ), (4)i idt

where is the proportion of the population in habitat ipi

and ( ) is the mean payoff. This is an un-V p pV � p V1 1 2 2

fortunate name in our context because “replicator” has
the connotation that change must be based on reproduc-
tion. But reproduction is typically not the driving force
behind strategy change for habitat selection; rather, it is
individuals changing their strategy quickly in response to
changes in resource availability in different habitats. One
way to interpret equation (4) is to assume that individuals
imitate the behavior of others if this observed behavior
has a higher payoff. An intuitive way to do this is to switch
to these observed higher payoff strategies but only at a
rate that increases as the difference in one’s own current
payoff and the observed payoff increases. Schlag (1997)
showed that such learning rules lead to replicator-like dy-
namics that increase the proportion of individuals in all
habitats whose payoff is better than average (and at a rate
that increases as this difference increases).

In the case of two habitats and the payoff function given
by equation (1), the replicator dynamics are

dp1 p p (1 � p )(V � V ). (5)1 1 1 2dt

It is easy to see that the IFD given by equation (2) is a
globally asymptotically stable equilibrium for the replicator
dynamics.
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The IFD for Two Competing Species in a
Two-Habitat Environment

In this section, we develop the theory of IFD for two
species that compete in each of the two habitats. We take
the following Lotka-Volterra-type individual payoff func-
tions in each habitat:

p M a q Ni i iV(p, q; M, N) p r 1 � � i p 1, 2,i i( )K Ki i

q N b p Mj j jW (p, q; M, N) p s 1 � � j p 1, 2. (6)j j( )L Lj j

Here, M and N are the total population sizes of species 1
and 2, respectively; vector denotes the pro-p p (p , p )1 2

portion of the first population in habitat 1 ( ) and inp1

habitat 2 ( ); vector denotes the distributionp q p (q , q )2 1 2

of the second population; and are the intrinsic growthr Ki i

rate and carrying capacity, respectively, for species 1 in
habitat i; and sj and are the intrinsic growth rate andLj

carrying capacity, respectively, for species 2 in habitat j.
Also, and are interspecific competition coefficients ina bi i

habitat i that model the effect of the second species on
the first species and of the first species on the second
species, respectively. (We sometimes abuse notation
slightly by referring to species 1 and 2 as species M and
N, respectively.) We remark that the model in equation
(6) extends the one considered by Křivan and Sirot (2002)
because in that article, the competition coefficients were
habitat independent (i.e., anda p a p a b p b p1 2 1 2

). Here, we relax this assumption, and we will show laterb

that this substantially affects the dynamics at the popu-
lation timescale level.

Payoffs of invaders with individual strategies ′p p
and when the monomorphic popu-′ ′ ′ ′ ′(p , p ) q p (q , q )1 2 1 2

lations have strategies and arep p (p , p ) q p (q , q )1 2 1 2

′ ′ ′V(p ; p, q) p pV (p, q) � p V (p, q),1 1 2 2

′ ′ ′W(q ; p, q) p q W (p, q) � q W (p, q).1 1 2 2

Following single-species cases, we define the IFD for two
species as an ESS of the underlying game. Thus, we seek
an equilibrium pair of distributions andp p (p , p )1 2

( , ) that is stable with respect toq p (q , q ) 0 ≤ p q ≤ 11 2 i i

spatial perturbations at fixed population densities M and
N. The following two-species NE condition is straightfor-
ward, namely,

′V(p ; p, q) ≤ V(p; p, q),

′W(q ; p, q) ≤ W(q; p, q), (7)

for all possible strategies and .′ ′ ′ ′ ′ ′p p (p , p ) q p (q , q )1 2 1 2

However, the extension of the single-species stability in
inequality (3) to multiple species is nontrivial because sev-
eral possibilities have been considered over the years. As
we will see, the game-theoretic “two-species ESS” condi-
tion taken from Cressman (1992; see also Cressman 2003;
Garay et al. 2003) is the one that corresponds to stability
with respect to spatial perturbations in our habitat selec-
tion model. This is a strategy pair such that at least one
of the inequalities

′ ′ ′ ′ ′V(p ; p , q ) ! V(p; p , q ),

′ ′ ′ ′ ′W(q ; p , q ) ! W(q; p , q ) (8)

is true for each perturbed distribution and′ ′ ′p p (p , p )1 2

that is sufficiently close (but not equal) to′ ′ ′q p (q , q )1 2

.(p, q)
Thus, we rule out the original suggestion of Taylor

(1979; see also Thomas 1986), who considers the sum of
the two payoff functions, V and W, and searches for a
single-species ESS with respect to this lumped payoff func-
tion. This suggestion is not acceptable because it assumes
that the two species “share” their payoff. To rephrase in-
equality (8), a two-species ESS is then one where, for all
other nearby population mean distributions, at least one
species does better playing its ESS strategy than playing
the mean strategy of this species. For the predator-prey
two-habitat model, we will also need the concept of an
(interior) weak two-species ESS, that is, a pair that(p, q)
satisfies inequality (8) whenever , , and′ ′p ( p q ( q

is close to .′ ′(p , q ) (p, q)
Two-species ESSs for two-habitat games have not pre-

viously been analyzed in the literature. They can be de-
termined graphically by plotting, for a given species, the
line in the unit square where both its pure strategies have
the same payoff (fig. 2). These two “equal-payoff” lines
are the solutions to

V (p, q) p V (p, q),1 2

W (p, q) p W (p, q) (9)1 2

for species 1 (solid line) and 2 (dashed line), respectively.
The six diagrams in figure 2 are representative of the pos-
sible qualitative situations (for a complete set of qualitative
diagrams, see fig. 2 and app. A in Křivan and Sirot 2002).
By using and , the equal-payoffp p 1 � p q p 1 � q2 1 2 1

line for species 1 is
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Figure 2: Ideal free distribution for two competing species (filled circles) at fixed population densities; unstable Nash circleequilibrium p open

K [K (r � r ) � r (M � Na )]1 2 1 2 2 2q p1 N(K r a � K r a )2 1 1 1 2 2

M(K r � K r )2 1 1 2� p1N(K r a � K r a )2 1 1 1 2 2

and for species 2 is

L [L (s � s ) � s (N � Mb )]1 2 1 2 2 2q p1 N(L s � L s )2 1 1 2

M(L s b � L s b )2 1 1 1 2 2� p .1N(L s � L s )2 1 1 2

Clearly, both of these lines have negative slopes that we
assume intersect at a point that is not on the boundary
of the unit square. If these lines intersect in the interior
of the unit square, then this strategy pair automatically
satisfies the NE condition given by inequality (7).

An ESS (fig. 2, filled circles) on the boundary of the unit
square can then be found by following the arrows in figure
2 that indicate directions in which the payoff for species
1 increases (horizontal arrows) and similarly for species 2

(vertical arrows). A boundary ESS is then any point where
all nearby boundary arrows point toward it as well as all
nearby interior arrows perpendicular to this boundary. In
particular, a vertex is an ESS if and only if both adjacent
boundary arrows point in that direction. That is, if the
two equal-payoff lines do not intersect in the unit square
(fig. 2A–2D), then there exists a unique ESS such that at
least one population occupies one habitat only. To deter-
mine whether an interior intersection of the two equal-
payoff lines is a two-species ESS requires more care. The
analysis of figure 2E shows the interior intersection (empty
circle) is not a two-species ESS even though it satisfies
inequality (7). However, if the two equal-payoff lines are
interchanged (fig. 2F), the interior intersection is the only
two-species ESS.

To summarize, for the two-species, two-habitat com-
petition model, there is exactly one ESS for all possible
parameter values except as in figure 2E, where the two
equal-payoff lines intersect in the interior of the unit
square and the equal-payoff line for species 2 is steeper
than the equal-fitness line for species 1, which happens
when
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Figure 3: Time evolution of two-species distributions governed by replicator game dynamics show convergence to the ideal free distribution (IFD).
A ( , , , ), Case where there is an interior IFD (cf. fig. 2F). B ( , , , ), Unstablea p 0.1 a p 0.1 b p 0.9 b p 0.9 a p 0.8 a p 0.8 b p 4 b p 41 2 1 2 1 2 1 2

interior Nash equilibrium (cf. fig. 2E). Other parameters: , , , , , , , , , .K p 15 K p 10 L p 12 L p 10 r p 1 r p 1 s p 1 s p 1 M p 3 N p 31 2 1 2 1 2 1 2

r K � r K b s L � b s L1 2 2 1 1 1 2 2 2 1
1 .

a r K � a r K s L � s L1 1 2 2 2 1 1 2 2 1

In this case, there are two ESSs, and without some addi-
tional information (e.g., about the order of colonization),
it is impossible to predict which of the two corresponding
species spatial distributions will be attained for the two
species. This inequality can be rewritten as

r s K L (1 � a b ) � r s K L (1 � a b )1 1 2 2 1 1 1 2 2 1 1 2

� r s K L (1 � a b ) � r s K L (1 � a b ) ! 0, (10)2 1 1 2 2 1 2 2 1 1 2 2

a form that is more convenient for certain observations.
For instance, if interspecific competition is weak ( andai

are sufficiently small so that ), a unique ESSb a b ! 1j i j

exists. The same holds if one species is dominant over the
other species in both habitats (e.g., a’s are much smaller
than b’s or vice versa).

The replicator equation (Taylor 1979) for the two com-
peting species is given by

dp1 p p (1 � p )(V (p, q) � V (p, q)),1 1 1 2dt

dq1 p q (1 � q )(W (p, q) � W (p, q)). (11)1 1 1 2dt

A phase plane analysis of the six representative cases in
figure 2 shows that a two-species ESS corresponds to a
locally asymptotically stable equilibrium of the replicator
equation. This is clearly shown in figure 3. In figure 3A,
the interior equilibrium is the ESS, and species distribution
converges to this IFD corresponding to figure 2F, whereas
figure 3B shows distributions that converge to the two
alternative IFDs when the intersection of the two equal-
fitness lines is not an ESS (i.e., corresponding to fig. 2E).

The IFD for Predator-Prey Species in
Two-Habitat Environment

Now we consider a predator-prey model in a two-habitat
environment. We assume that both prey and predators are
mobile and they move between patches so that their payoff
maximizes. We will assume Lotka-Volterra-type fitness
functions

jp MiV(p, q; M, N) p r 1 � � a q N ,i i i i( )Ki

W (p, q; M, N) p s (�1 � b p M). (12)j j j j

Here, is the payoff of prey, and is the payoff ofV Wi i

predators in habitat i ( ). The case where there isi p 1, 2
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Figure 4: Ideal free distribution (filled circle) for the predator-prey game.
A, No intraspecific competition among prey ( ); B, competitionj p 0
among prey ( ).j 1 0

no intraspecific competition ( ) was studied by Kři-j p 0
van (1997) and Křivan and Schmitz (2003).

To determine the IFD, we will assume without loss of
generality that the predator’s intrinsic death rates satisfy

. The equal-payoff line for the predators 1 s1 2

( ) isW (p, q; M, N) p W (p, q; M, N)1 2

s � s � s b M1 2 2 2p p ,1 M(s b � s b )1 1 2 2

which is a vertical line (fig. 4, dashed line). If this line is
to the right of the unit square (i.e., when expression for

is larger than 1), then all predators must occupy habitatp1

2 only ( ), and the problem reduces to a single-q p 01

species habitat selection (for the prey), which we know
has a unique ESS and thus IFD. For example, this happens
when density of prey is low, so predators cannot balance
their higher mortality rate in habitat 1 by higher foraging
in that habitat, and, consequently, the best strategy for
them is to spend all their time in the habitat with the lower
mortality rate (i.e., habitat 2 in our case).

The equal-payoff line for prey

K r � K r � K Nr a � Mr j2 1 2 2 2 2 2 2q p1 K Nr a � K Nr a2 1 1 2 2 2

(K r � K r )Mj2 1 1 2� p1(r a � r a )K K N1 1 2 2 1 2

is shown as the solid line in figure 4. This line is either
decreasing (for ; fig. 4B) or horizontal (for ;j 1 0 j p 0
fig. 4A). Following Křivan (1997), it can be shown that if
one of the two lines does not intersect the unit square,
there exists (generically) a unique ESS on the boundary
of the square. Finally, if the two equal-payoff lines intersect
in the interior of the unit square, this point is the only
strategy pair that satisfies the NE condition given by in-
equality (7). It is also a weak two-species ESS (see fig. 4)
for both cases (i.e., and ).j 1 0 j p 0

In the same way that there is a correspondence between
IFD and stable equilibrium of replicator dynamics for the
competition case, there is a similar correspondence for the
predator-prey interactions. The replicator dynamics in
equation (11) for the predator-prey game become

dp1 p p (1 � p )1 1dt

r p r p1 1 2 2# r � r � jM � � N(r a q � r a q ) ,1 2 1 1 1 2 2 2[ ( ) ]K K1 2

dq1 p q (1 � q )[�(s � s ) � M(s p b � s p b )].1 1 1 2 1 1 1 2 2 2dt

(13)

Then, the weak two-species ESS is an equilibrium of the
above replicator dynamics, and it is stable with respect to
equation (13) but may not be locally asymptotically stable.
This is clearly shown in figure 5A, where there is no in-
traspecific prey competition, while it is globally asymp-
totically stable under positive competition (fig. 5B).

Ecological Timescale

As discussed in the introduction to this article, individuals
facing habitat selection, either in the field or in experiments,
typically change their strategy rapidly (relative to their gen-
erational time) in response to changing environments. This
suggests that the timescale for population dynamics is much
longer than that of the population distribution evolution.
In this section, we consider the population dynamics for
the previous models under the assumption that mean strat-
egies are instantaneously at their IFD for the current density,
and we ask whether the short-term behavior influences
long-term population dynamics.

The Single-Species Model

The IFD (such as the one for a single species given by eq.
[2]) depends naturally on the overall population density
(M), and in what follows we will make this dependency
explicit by writing and so forth. Now individualp(M)
payoffs do translate into population fitness. Specifically,
the expected fitness of the population mean strategy (that
is assumed to be distributed according to the IFD) is

F(M) p p (M)V (p(M), M) � p (M)V (p(M), M)1 1 2 2

p (M)M p (M)M1 2p p (M) 1 � � p (M) 1 � .1 2( ) ( )K K1 2

If generation time is l, the continuous-time population
dynamic becomes
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Figure 5: Trajectories of the replicator dynamics of predator-prey distribution after perturbation from the ideal free distribution. A, Case where
there is no intraspecific competition among prey ( ); B, Prey-intraspecific competition ( ). Other parameters: , ,j p 0 j p 0.5 a p 0.1 a p 0.11 2

, , , , , , , .b p 0.9 b p 0.9 K p 15 K p 10 r p 1 r p 1 s p 1 s p 11 2 1 2 1 2 1 2

dM(t) 1
p M(t)F(M(t)), (14)

dt l

which is given by Křivan and Sirot (2002) in explicit ex-
panded form. Because trajectories of this one-dimensional
dynamic depend only on l up to a change in timescale,
any choice of positive l, such as , will not affect thel p 1
following discussion of the long-term outcome of these
dynamics and their stability properties.

We first show that at the population equilibrium, all
patches will be completely occupied. This is a nontrivial
prediction because outside of the population equilibrium,
consumers, when at low densities, will occupy the better
patch only (see eq. [2]). Suppose is a positive popu-∗M
lation equilibrium of equation (14). Then, all strategies
that are present in the IFD (i.e., those strategies for which

) must satisfy∗p (M ) 1 0i

∗ ∗V(p(M ), M ) p 0i

because all these are equal at the IFD (an-∗ ∗V(p(M ), M )i

imal fitness is equalized over all occupied patches under
the IFD) and the equilibrium population growth rate is 0
( ). Moreover, in population equilibrium, all∗F(M ) p 0
habitats will be occupied because if some habitat were
empty (i.e., ), then , so∗ ∗ ∗p (M ) p 0 V(p(M ), M ) p r 1 0i i i

individuals moving to that habitat would obtain a higher

payoff than those staying in other habitats. Thus, at the
population equilibrium , all habitats will be occupied,∗M
and individual fitness will be the same (and equal to 0)
in all habitats. This immediately implies that at the pop-
ulation equilibrium, the density in each habitat is given
by its carrying capacity (i.e., for all i), and so,∗m p Ki i

when there are only two habitats, the overall population
abundance is ∗M p K � K .1 2

It is interesting to point out that the same qualitative
result emerges from the alternative model for population
dynamics that assumes that animals do not move between
habitats (e.g., sessile organisms). This leads to the logistic
equation

dm mi ip m 1 �i( )dt Ki

in each habitat ( ). Contrary to the case where an-i p 1, 2
imal distribution follows IFD, now the timescale for the
dynamics of animal distribution (given by ) isp p m /Mi i

of the same order as the population dynamics. Clearly,
converges to for all i and . That∗ ∗m m p K M p K � Ki i i 1 2

is, from a population point of view that does not observe
whether individuals change habitats, the two stable lim-
iting distributions look identical; namely, the proportion
of individuals in a given habitat is exactly equal to its
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carrying capacity. Thus, one can wonder whether this is
a general property or whether this is limited to the special
case of single-species habitat selection models. In fact, we
will already see that individual behavior is important for
two-species IFD (i.e., qualitative predictions when animals
can move are different from those when they cannot).

The Two-Species Competition Model

Here, we consider population dynamics of two competing
species in a two-habitat environment. We compare two
types of population dynamics. The first type assumes that
animals do not move between habitats at all, while the
second type of population dynamics assumes that at each
time, the distribution of animals follows the two-species
IFD. These two cases can describe differences in popula-
tion dynamics of competing sessile organisms versus those
that are highly mobile.

First, let us assume that individuals do not move be-
tween habitats. This leads to an elementary analysis of the
population dynamics because the two-species dynamics in
habitat 1 are completely independent of those of habitat
2. Thus, the dynamics in habitat i form the following
standard two-species competition model of Lotka-Volterra
type:

dm m a ni i i ip m r 1 � � i p 1, 2,i i( )dt K Ki i

dn n b mj j j jp n s 1 � � j p 1, 2. (15)j j( )dt L Lj j

Suppose each habitat has an equilibrium where both spe-
cies coexist. The corresponding equilibrium is given by

K � a Li i i∗m p ,i 1 � a bi i

L � b Ki i i∗n p i p 1, 2.i 1 � a bi i

Second, let us consider mobile animals whose spatial
distributions and of species 1 and 2,p(M, N) q(M, N)
respectively, track the IFD. Population dynamics for over-
all species densities M and N are then given by the fol-
lowing model:

dM
p M[pV (p, q; M, N) � p V (p, q; M, N)],1 1 2 2dt

dN
p N[q W (p, q; M, N) � q W (p, q; M, N)]. (16)1 1 2 2dt

Substituting , ,∗ ∗ ∗ ∗ ∗ ∗ ∗M p m � m N p n � n p p1 2 1 2 i

, and in equation (16) shows that the∗ ∗ ∗ ∗ ∗m /M q p n /Ni i i

interior equilibrium of equation (15) where animals do
not move between patches is also an equilibrium of equa-
tion (16) when animals move and their distribution cor-
responds to the IFD. The interesting question now is how
the stability of the model without migration (eq. [15])
compares to the model where animals migrate (eq. [16]).
We know that the model without migration is globally
asymptotically stable in both habitats if and only if 1 �

and . However, there is no relationa b 1 0 1 � a b 1 01 1 2 2

between these inequalities and inequality (10) that deter-
mines whether distribution is IFD for the popu-∗ ∗(p , q )
lation equilibrium densities and when animals do∗ ∗M N
migrate.

Thus, it is easy to construct examples that show that a
stable population equilibrium exists for the model without
migration (eq. [15]) under which the species distribution
is not stable with respect to small spatial perturbations;
that is, it does not correspond to the IFD (fig. 6). Figure
6 (left column) shows the case where animals do not move
between habitats and the corresponding animal distribu-
tion is and at the globally asymp-∗ ∗p p 10/11 q p 1/111 1

totically stable population equilibrium of∗ ∗M p N p 11
equation (15). However, for the model that assumes mi-
gration (fig. 6, right column), this spatial distribution (fig.
6, bottom right panel, open circle) is not stable with respect
to small spatial perturbations (because inequality [10]
holds; cf. fig. 6, bottom right panel, with fig. 2E). Thus,
this spatial animal distribution is not an IFD for the model
where animals move between habitats. Small perturbations
of spatial distributions of both populations that are at the
population equilibrium lead (on a fast behavioral time-
scale) to spatial redistribution and to a new population
equilibrium as shown in figure 6 (top right panel). Here,
animal movement between habitats leads to complete seg-
regation of the two species as shown in figure 6 (bottom
right panel); that is, either species M occupies habitat 1
while species N occupies habitat 2 or species M occupies
habitat 2 while species N occupies habitat 1, and species
equilibrial densities are given by the corresponding car-
rying capacities ( and , re-∗ ∗ ∗ ∗M p N p 19 M p N p 2
spectively). To rephrase the analysis of this example, we
find that individual animal behavior can have an impor-
tant effect on the population dynamics. When animals
cannot move between habitats, both species coexist in each
habitat. However, if animals migrate, the species can seg-
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Figure 6: Top, Overall population dynamics of two competing species M and N in the species density phase space. Two trajectories are shown.
Bottom, Corresponding species distributions over two habitats. Left, Individuals do not move between habitats. Right, Individuals are mobile and
follow the ideal free distribution (IFD). Bottom right, No nonconstant trajectories because the two species immediately segregate into separate habitats
(i.e., there are two possible IFDs: , and , ; filled circles) and stay segregated as their population sizes approach equilibrium.p p 1 q p 0 p p 0 q p 11 1 1 1

The distribution that corresponds to and at the population equilibrium for immobile animals (bottom right, open circle) isp p 10/11 q p 1/111 1

not an IFD, and this population equilibrium (top right, open circle) is destabilized by animal movement. Parameters: , , ,a p 9 a p 0.1 b p 0.11 2 1

, , , , , , , , .b p 9 K p 19 K p 2 L p 2 L p 19 r p 1 r p 0.1 s p 0.1 s p 12 1 2 1 2 1 2 1 2

regate in separate habitats. That is, in this latter case, seg-
regation is maintained by the potential of interspecific
competition, giving a concrete interpretation of the “ghost
of competition” as discussed by Morris (1999).

Conversely, figure 7 shows that population dynamics
also have an important effect on animal behavior because
a population equilibrium can be unstable at the corre-
sponding IFD when animals migrate. In this figure, there
exists an unstable population equilibrium for equation
(16) with migration (fig. 7, upper panel, open circle) for
which the corresponding species distribution is an IFD

(i.e., stable with respect to spatial perturbations in species
distribution because inequality [10] does not hold). This
equilibrium is shown in the bottom panel as the filled
circle (which emphasizes the fact that this spatial distri-
bution is an IFD, i.e., stable) inside the square. However,
the corresponding population equilibrium is unstable,
which means that small perturbations to population den-
sities lead to a departure from this equilibrium and to a
new population equilibrium (as documented by two tra-
jectories shown in fig. 7, upper panel). Because the spatial
distributions change as population densities change, the
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Figure 7: Interior ideal free distribution (bottom, interior filled circle) and
the corresponding population equilibrium, which is unstable (top, open
circle). Perturbations in population densities lead to departure from this
population equilibrium and to convergence to a new population equi-
librium and new species distribution. Two such trajectories are shown.
Parameters: , , , , , ,a p 0.1 a p 11 b p 11 b p 0.1 K p 2 K p 211 2 1 2 1 2

, , , , , .L p 21 L p 2 r p 1 r p 0.1 s p 0.1 s p 11 2 1 2 1 2

species spatial distribution changes too, and a new IFD
(fig. 7, filled circles on the boundary of the square) is
reached at the new population equilibrium.

The examples for figures 6 and 7 show that several forces
can support the evolution of segregation into two different
habitats in two-species models. Specifically, in figure 6,
mobile animals may segregate even though the population
dynamics suggest that species will coexist. In figure 7, it

is the population dynamics that underlie habitat segre-
gation and not individual behavior. Thus, under these lat-
ter conditions, there will be no long-term difference in
population densities and population spatial distributions
whether individuals are mobile.

On the other hand, when interaction coefficients are
independent of habitat (i.e., when anda p a p a1 2

), we do see that equation (15) is (globally)b p b p b1 2

asymptotically stable if and only if is an IFD at∗ ∗(p , q )
fixed population densities and . Furthermore, in∗ ∗M N
this case, both of these conditions are equivalent to the
asymptotic stability of in equation (16)∗ ∗ ∗ ∗(p , q ; M , N )
(the technical proof based on the linearization technique
is given in app. A).

The Two-Species Predator-Prey Model

Here we consider population dynamics for the predator-
prey model at the ecological timescale level. First, let us
assume that individuals do not move between habitats.
This again leads to an elementary analysis of the popu-
lation dynamics because the two-species dynamics in hab-
itat 1 are completely independent of those in habitat 2.
Thus, the dynamics in habitat i now form the following
standard two-species predator-prey model of Lotka-
Volterra type:

dm jmi ip m r 1 � � a n i p 1, 2,i i i i( )dt Ki

dnj p n s (�1 � b m ) j p 1, 2. (17)j j j jdt

If there is an equilibrium where both species coexist in
each habitat, it is given by

1∗m p ,i
bi

1 � j/(b K )i i∗n p i p 1, 2.i
ai

This equilibrium is globally asymptotically stable provided
and neutrally stable if .j 1 0 j p 0

Second, let us consider the case where animals can move
between the two patches and their spatial distribution

and of species 1 and 2, respectively, trackp(M, N) q(M, N)
the IFD. Then, population dynamics are given by equation
(16), where we substitute the corresponding fitness func-
tions from equation (12). Appendix B shows that for pos-
itive levels of intraspecific competition ( ), a popu-j 1 0
lation equilibrium where predator and prey coexist in each
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habitat is always asymptotically stable for mobile animals
just as it is for immobile animals as noted above. That is,
for predator-prey interactions, an IFD at population equi-
librium is stable for population dynamics based on either
mobile or immobile animals. Thus, in this case, animal
behavior does not influence the qualitative predictions of
population dynamics.

Discussion

The IFD is a key component of evolutionary ecology that
aims to understand species distribution in habitats where
resources are patchily distributed. Fretwell and Lucas
(1970) defined the IFD for a single species in a habitat
consisting of two or more resource patches. They assumed
that animals move freely and instantaneously between
patches and settle in the patch with the highest suitability.
In our terminology, the suitability of a patch determines
the individual’s payoff at the behavioral timescale level and
its fitness at the population timescale level (see table 1).
Thus, under the IFD, all individuals will have the same
fitness. In this setting, the individual strategy is the pro-
portion of the lifetime an average animal will spend in
either patch. Moreover, because this fitness also depends
on the strategy of other individuals, the IFD is a game-
theoretical concept.

One of the key concepts used in evolutionary ecology
is the notion of ESS (Maynard Smith 1982). In fact, the
IFD is often referred to in the literature as an example of
an ESS. By definition, an ESS is the best strategy when
played against itself, and it is stable with respect to other
invading strategies that when played against it give the
same fitness. The first condition implies that in our setting,
fitness of all individuals is the same. Thus, the original
definition of the IFD coincides with the first part of the
ESS definition for a single species. How about the second
stability condition? A natural stability requirement for the
IFD in this setting is stability with respect to perturbations
in species distribution. In other words, we require that
after the species distribution is perturbed, then it moves
back toward the original IFD distribution. Distributions
that are unstable with respect to small perturbations can-
not persist in nature. In this article, we showed that IFD
stability is equivalent to ESS stability for a single species
at fixed population density. That is, a resident population
that resists invasion by a few individuals by using a dif-
ferent strategy (i.e., an ESS in the classical sense of May-
nard Smith [1982]) is also an IFD distribution in that it
is stable with respect to spatial perturbations (and con-
versely). Then, we went further and extended the IFD for
two species (that are either competing for spatially dis-
tributed resources or are in a predator-prey interaction in

two spatially separated patches) by defining it as a two-
species ESS (Cressman 2003).

In the literature, there have been several other attempts
to extend the IFD for single species to multispecies en-
vironments, assuming fixed population densities. Some of
these studies assumed that the equal payoff lines for the
two species do not intersect (Possingham 1992; Grand
2002), which was due to the particular choice of payoff
functions. Under such an assumption, each species oc-
cupies one habitat only, and coexistence of both species
in one habitat is impossible. Graphically, the IFD for two
competing species can be visualized in the species density
phase space by isoclines (Rosenzweig 1979, 1981, 1986,
1991) or by isodars (Morris 1988, 1994; Morris et al. 2000).
Isoclines are the curves in the species density phase space
that separate regions with qualitatively different species
distributions. For example, the 0% isocline for species A
separates population densities of species A and B for which
species A occupies only the second patch. Similarly, we
can define the 100% isocline and other isoclines as well.
The isodar for species A is the curve in the habitat 1–
habitat 2 density phase space along which the expected
fitness of individuals is identical in the two habitats (Mor-
ris 1988). Isodars can be extended for two species, in which
case the plots are in the patch 1 versus patch 2 total species
density phase space (Morris 1988, 1989). In other words,
isodars are the equal fitness lines plotted in species density
phase space. Relation between isolegs and isodars was
studied by Morris (1999). However, neither Rosenzweig
nor Morris went further to define and compute the IFD
for two competing species for each fixed species densities.
This was done by Křivan and Sirot (2002) using game
theory. They defined two-species IFD over two habitats as
the strategy that is the best response when played against
itself (the first NE condition for ESS) and that is stable
with respect to spatial perturbations, but the concept of
stability was not clearly spelled out. The authors also as-
sumed that interspecific competition is patch independent
(i.e., the competition coefficients a and b are patch in-
dependent). Therefore, this article is the first study we are
aware of that clearly defines the concept of IFD for two
species. Moreover, this concept of IFD can be applied not
only to competing species but also to predator-prey games
where predators are searching for prey and prey try to
avoid predators. The latter game was studied by Křivan
(1997) and Křivan and Schmitz (2003) but only under the
condition that there was no intraspecific competition be-
tween prey. Because their definition of a predator-prey IFD
is actually a weak two-species ESS, the definition of IFD
given in this article extends these previous works and al-
lows intraspecific competition in the prey population,
which is a nontrivial extension of those earlier works.

For further advancement of ecology, it is crucial to un-
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derstand linkages between animal behavior and population
dynamics. An important initial issue is whether the be-
havior of individuals influences the long-run outcome of
the population dynamics. To this end, we compared two
possibilities for individual behavior: either individuals
move between habitats and rapidly settle at the IFD for
current population size(s) or they are prevented from
changing habitats (perhaps through a physical barrier sep-
arating the habitats, or perhaps individuals are completely
immobile). For single-species models, we find no differ-
ence among the predictions either on the population or
on the behavioral timescale. The equilibrial population
abundance and the corresponding spatial distribution were
the same regardless of whether animals could move be-
tween patches. That is, someone observing different two-
habitat systems (each system corresponding to one of our
two scenarios of individual behavior) with the same model
parameters would see the same population distribution
between the two habitats. It would require more careful
observations to ascertain whether individual animals
moved between habitats and, if so, at what rate these in-
dividuals changed the average amount of time they spent
in each habitat. In particular, when we study population
dynamical consequences of the IFD, we find that for a
single population in an environment consisting of two or
more resource patches, all patches will be occupied at the
population equilibrium. This prediction differs from the
IFD that does not consider population dynamics because
the IFD predicts that at low population density, individuals
will congregate in the best habitat, and additional habitats
will be sequentially occupied as population size increases
(Fretwell and Lucas 1970).

However, for two-species models, the eventual stable
equilibrium population distribution does depend on
whether individuals migrate. We have shown this clearly
in the competitive species example for figure 6 that com-
pares predictions with immobile animals to those with
mobile animals. Here, two competing species that cannot
move between habitats will eventually coexist in some
equilibrial population densities in both habitats while mo-
bile species segregate into separate habitats (fig. 6). This
prediction shows that for two or more competing species,
one cannot analyze the habitat selection in a species by
analyzing the two separate habitats in isolation, as the
single species model suggests. The reason for these dis-
crepancies is the fact that for multiple species, the spatial
species distribution may not be an IFD because it is not
stable with respect to spatial perturbations at the corre-
sponding stable species population equilibrium. Similarly,
the population equilibrium that corresponds to an IFD
may not be stable with respect to population dynamics
(fig. 7). These discrepancies between long-term population
stability versus short-term stability of species distribution

(i.e., population dynamics vs. game dynamics) are due to
the fact that for population stability with immobile ani-
mals, we only need the strength of interspecific compe-
tition relative to that of intraspecific competition to be
small in each habitat (this is the classical stability condition
for the single habitat Lotka-Volterra competition model).
However, for the stability of the species distribution when
animals do migrate, not only these relative strengths but
also the relative strengths between different habitats (e.g.,
products of the form in our notation) must be smalla b1 2

enough because a single individual visits both patches dur-
ing its lifetime.

On the other hand, we have shown that there are several
special scenarios under which population and distribution
stability lead to the same predictions. For example, if in-
terspecific competition for both species is patch indepen-
dent (which means that the coefficient for interspecific
competition for species 1 is the same in both patches and
similarly for species 2), then the population equilibrium
for the model that does not assume migration between
patches and the corresponding two-species distributions
are also stable population equilibria and IFD when indi-
viduals do migrate between patches. Similarly, if interspe-
cific competition is weak when compared with intraspecific
competition across both patches, then the model with mi-
gration leads to the same stable population equilibrial den-
sities and species distribution as the model without mi-
gration. Furthermore, for predator-prey interactions,
population and distribution stability always lead to the
same predictions.

To verify our theoretical predictions for two competing
species, we can suggest the following experimental setup
consisting of two different habitats occupied by two com-
peting species. In one treatment, migration of the two
species between habitats would be blocked, while in the
other treatment, individuals could freely migrate. Provided
differences in habitats are big enough so that inequality
(10) holds and yet, for these same parameters, both species
coexist in either habitat when migration is blocked, then
we should observe changes in species distribution among
habitats when individuals are allowed to migrate. Con-
sequently, there will also be changes in population abun-
dances. If inequality (10) does not hold, then both treat-
ments should give the same results (i.e., equilibrium
population abundances and population distribution
should be the same whether individuals migrate). Simi-
larly, for a single species or for predator-prey interactions,
the two treatments should give the same results. Related
experiments were done in the Western Negev Desert with
two species of gerbils (Abramsky et al. 1991, 1994). In
these experiments, isolegs and isoclines for Gerbillus alen-
byi and Gerbyllus pyramidum were estimated. The exper-
imental design consisted of two identical enclosures con-
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nected by gates. Each of the two enclosures contained two
habitat types: semistabilized and stabilized dunes. In one
experiment (Abramsky et al. 1991), only G. alenbyi could
migrate between the two enclosures, while in the other
experiment (Abramsky et al. 1994), only G. pyramidum
could pass through the gates. Manipulating species den-
sities allowed for the experimental estimation of the IFD
for the two species and also their population equilibrium
(Abramsky et al. 1994). When at low abundance, both
species showed clear preferences for the same habitat
(semistabilized dune). As densities of the stronger com-
petitor G. pyramidum increased, the weaker competitor
(G. alenbyi) switched its preference for the alternative hab-
itat (stabilized dune). At the population level, one stable
population equilibrium and one unstable population equi-
librium were predicted. The corresponding IFD at the sta-
ble population equilibrium predicted that the two species
would segregate to different habitats. This clearly shows
that there is an interplay between population dynamics
and species distribution for which our theoretical results
given in this article provide a testable hypothesis.
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APPENDIX A

Competitive Species Population Dynamics

We linearize the population dynamics of equation (16)
around an interior equilibrium (i.e., one where both spe-
cies coexist in both habitats) for the two-species compe-
tition model. From equation (9), we compute for fixed
population densities M and N

1
p M p [A(s L � s L ) � B(a r K � a r K )],1 1 2 2 1 1 1 2 2 2 1C

1
q N p [B(r K � r K ) � A(b s L � b s L )], (A1)1 1 2 2 1 1 1 2 2 2 1C

where ,A p (r � r )K K � r K (M � a N) B p (s �1 2 1 2 2 1 2 1

, and C is given by the left-hands )L L � s L (b M � N)2 1 2 2 1 2

side of inequality (10). Solving these expressions for p1

and in terms of M and N and then substituting themq1

into the right-hand side of equation (16) allows us to
compute the corresponding population equilibrium
( ) and check for its stability. The straightforward∗ ∗M , N
but tedious calculation produces the Jacobian ma-2 # 2
trix with entriesJ

∗r r M [s L (a b � 1) � s L (a b � 1)]1 2 1 2 1 1 2 1 2 2J p ,11 C

∗r r M [a s L (a b � 1) � a s L (a b � 1)]1 2 2 1 2 1 1 1 2 1 2 2J p ,12 C

∗s s N [b r K (a b � 1) � b r K (a b � 1)]1 2 2 1 2 1 1 1 2 1 2 2J p ,21 C

∗s s N [r K (a b � 1) � r K (a b � 1)]1 2 1 2 1 1 2 1 2 2J p .22 C

(A2)

For asymptotic stability, we need andtr(J) p J � J ! 011 22

.det (J) p J J � J J 1 011 22 12 21

These formulas simplify considerably when a p1

and . We geta p a b p b p b2 1 2

C p (r s K L � r s K L1 1 2 2 1 2 2 1

� r s K L � r s K L )(1 � ab),2 1 1 2 2 2 1 1

∗tr(J) p [r r M (s L � s L )1 2 1 2 2 1

(ab � 1)∗� s s N (r K � r K )] ,1 2 1 2 2 1 C

∗det (J) p �[r r M (s L � s L )1 2 1 2 2 1

3(ab � 1)∗# s s N (r K � r K )] .1 2 1 2 2 1 2C

The interior equilibrium is a two-species ESS (i.e., )C 1 0
if and only if the pure-strategy dynamic is asymptotically
stable (i.e., ) and if and only if the population dy-ab ! 1
namics with mobile consumers in equation (16) are as-
ymptotically stable (i.e., and ).tr(J) ! 0 det (J) 1 0

APPENDIX B

Predator-Prey Population Dynamics

Following the same lines for competing populations, we
find that an interior equilibrium for the predator-prey
model is given by
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s � s � Ms b1 2 2 2p p ,1 M(s b � s b )1 1 2 2

r � r � Nr a1 2 2 2q p1 N(r a � r a )1 1 2 2

(s � s )(K r � K r ) � M(s K r b � s K r b )2 1 1 2 2 1 1 1 2 1 2 2 1 2� j .
K K N(r a � r a )(s b � s b )1 2 1 1 2 2 1 1 2 2

The Jacobian matrix has the following entries:J

r r (K s a b � K s a b )j1 2 1 1 1 1 2 2 2 2∗J p �M ,11 K K (r a � r a )(s b � s b )1 2 1 1 2 2 1 1 2 2

r r a a1 2 1 2∗J p �M ,12 r a � r a1 1 2 2

s s b b1 2 1 2∗J p N , (B1)21 s b � s b1 1 2 2

J p 0.22

Because and for , it follows im-tr(J) ! 0 det (J) 1 0 j 1 0
mediately that the interior equilibrium of the model with
mobile predators and prey

1 1∗M p � ,
b b1 2

1 � (j/K b ) 1 � (j/K b )1 1 2 2∗N p �
a a1 2

is asymptotically stable when there is intraspecific com-
petition among the prey.
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Křivan, V. 1997. Dynamic ideal free distribution: effects
of optimal patch choice on predator-prey dynamics.
American Naturalist 149:164–178.

———. 2003. Ideal free distributions when resources un-
dergo population dynamics. Theoretical Population Bi-
ology 64:25–38.
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van Baalen, M., V. Křivan, P. C. J. van Rijn, and M. Sabelis.
2001. Alternative food, switching predators, and the per-
sistence of predator-prey systems. American Naturalist
157:512–524.

Werner, E. E. 1992. Individual behavior and higher-order
species interactions. American Naturalist 140(suppl.):
S5–S32.

Associate Editor: Donald L. DeAngelis


	Ideal Free Distributions, Evolutionary Games, and Population Dynamics in Multiple-Species Environments
	Recommended Citation

	tmp.1333652049.pdf.qFBFN

