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abstract: The effect of the behavioral dynamics of movement on
the population dynamics of interacting species in multipatch systems
is studied. The behavioral dynamics of habitat choice used in a range
of previous models are reviewed. There is very limited empirical
evidence for distinguishing between these different models, but they
differ in important ways, and many lack properties that would guar-
antee stability of an ideal free distribution in a single-species system.
The importance of finding out more about movement dynamics in
multispecies systems is shown by an analysis of the effect of move-
ment rules on the dynamics of a particular two-species–two-patch
model of competition, where the population dynamical equilibrium
in the absence of movement is often not a behavioral equilibrium
in the presence of adaptive movement. The population dynamics of
this system are explored for several different movement rules and
different parameter values, producing a variety of outcomes. Other
systems of interacting species that may lack a dynamically stable
distribution among patches are discussed, and it is argued that such
systems are not rare. The sensitivity of community properties to
individual movement behavior in this and earlier studies argues that
there is a great need for empirical investigation to determine the
applicability of different models of the behavioral dynamics of habitat
selection.
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Knowing how animals should distribute themselves among
different habitats is important for understanding observed
spatial distributions. The question is of growing signifi-
cance because biological communities are increasingly be-
ing fragmented into “metacommunities” in partially iso-
lated habitat patches (e.g., Holyoak et al. 2005). The “ideal
free distribution” (IFD), an idea introduced by Fretwell
and Lucas (1970; see also Fretwell 1972), has played a key
role in analyses of between-patch distribution under local
density dependence. The IFD for a single species is usually
defined as a distribution in which two criteria are satisfied:
all occupied patches are characterized by equal fitness, and
this is greater than the fitness an individual would achieve
were it to move to any unoccupied patch. Fretwell and
Lucas’s (1970) definition used “ideal” to refer to the as-
sumption that the animals in question had complete and
accurate information on conditions in different habitats
and “free” to refer to the lack of constraints on or costs
to movement. These two conditions are not always needed
to achieve an IFD (Cressman and Křivan 2006). Unfor-
tunately, most of the analyses of the IFD have assumed
movement of only a single species and have ignored in-
terspecific interactions. Furthermore, they have largely ig-
nored the nature of behavioral movement rules that might
lead to an IFD. Several articles have considered whether
IFDs will be attained in particular multispecies models
with specific assumptions about between-patch move-
ment; these include Schwinning and Rosenzweig (1990),
Abrams (1999, 2000), and Křivan and Sirot (2002). These
studies have come to differing conclusions about whether
each species’ eventual distribution among patches satisfies
the traditional definition of an IFD. A wide range of other
studies not explicitly concerned with IFDs have adopted
a variety of different behavioral models of movement (see
reviews by Briggs and Hoopes [2004] and Grimm and
Railsback [2005]).

Two recent articles in this journal (Cressman et al. 2004,
hereafter CKG, and Cressman and Křivan 2006, hereafter
CK) have begun to address some of the limitations of
previous IFD theory. CKG extended the definition of an
IFD to encompass two species (1 and 2) in the context of
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a two-habitat (A and B) model. The species were char-
acterized by habitat distributions, denoted {p, q}, giving
the fractions of populations 1 and 2, respectively, located
in habitat A. Here we call a distribution yielding equal
fitness across occupied habitats for each species at a par-
ticular pair of population densities a “candidate IFD” for
those densities. CKG define a two-species IFD as a can-
didate IFD that is stable to spatial perturbations in the
following sense: for any perturbed distribution {p′, q ′}
characterized by the same population densities, the fitness
of at least one of the species at that perturbed state is lower
than the fitness of the candidate IFD at the perturbed state.
This work did not specify the dynamics by which p and
q changed, leaving it unclear whether all types of move-
ment that increased individual fitness would bring a system
to the IFD. CKG did note that, to persist, an IFD must
also be an equilibrium for population dynamics. Later, CK
showed that a single-species system having two (or more)
patches and strictly negative effects of density in each patch
would reach an IFD by several classes of movement rules
and that this IFD was uninvadable; that is, it was an evo-
lutionarily stable strategy. Two properties were sufficient
to reach the single-species IFD: no movement to poorer-
quality patches and some movement to the best patch.
However, CKG and CK still did not provide much guid-
ance regarding the between-patch distributions expected
in a generic metacommunity, in which movement behav-
iors of some or all species may not fall within the class
that is guaranteed to reach a single-species IFD. Further-
more, these two works did not provide a description of
the population dynamics that could result when a two-
species IFD (sensu CKG) did not exist.

This work shows that the habitat distribution that comes
about in a metacommunity is often quite sensitive to the
behavioral dynamics of movement. It shows that previous
models of movement dynamics have differed in a number
of important respects but that there is little empirical evi-
dence that can be used to choose among these models
when considering any particular system. It then uses an
example of two competitors in a two-patch system (from
CKG) to show that the differences between equally plau-
sible movement models can lead to surprisingly large dif-
ferences in population dynamics when two mobile species
interact in a patchy environment. This article presents
some general arguments why the phenomena exhibited in
this example are unlikely to be rare. Finally, it draws con-
clusions about the general importance of incorporating
adaptive behavior into community models and the im-
portance of more empirical work to distinguish among
the many potential models of habitat selection if we are
to understand population dynamics within metacom-
munities.

Previous Models of Habitat Selection Dynamics in
Systems with Several Interacting Species

Here we classify and analyze several models that have been
used to describe an animal’s choice of location when fitness
differs between habitats. These models span the range of
published models in terms of several important binary
characteristics. Theoretical studies on habitat selection of
interacting species that included explicit dynamics for hab-
itat choice for at least one species include Bernstein et al.
(1988, 1991, 1999), Schwinning and Rosenzweig (1990),
Ives (1992), Abrams and Matsuda (1993, 2004), van Baalen
and Sabelis (1993, 1999), Matsuda and Abrams (1994),
Abrams (1999, 2000, 2006a, 2006b), Alonzo (2002), de
Roos et al. (2002), Persson and de Roos (2003), and Arms-
worth and Roughgarden (2005a, 2005b). Adaptive move-
ment has also been incorporated into a large number of
simulation models of animals in particular systems. Fryxell
et al. (2004, 2005) is representative of a number of spatially
explicit simulations of patch selection involving adaptive
habitat choice that have compared model predictions to
observations of spatial distributions. Many previous mod-
els of interacting species with flexible behaviors have ig-
nored the dynamics of change in location and have simply
assumed that those species instantaneously reach an IFD
(Rosenzweig 1991; Křivan 1997; Křivan and Sirot 2002).

Most of the models of habitat choice mentioned in the
preceding paragraph can be classified into several cate-
gories in regard to the following properties: (1) Is move-
ment out of a patch a function of conditions in only the
current patch or of conditions in other patches as well?
(2) Is movement to a poorer-quality patch possible? (3)
Is fixation of habitat location possible? (4) Is the timescale
of between-patch movement rapid or slow relative to de-
mographic processes? Different models from the literature
cited in the preceding paragraph have differed in how they
address these questions. Perhaps the one common feature
of all models listed is that the instantaneous rate of move-
ment (for continuous models) or the probability of move-
ment (for discrete models) of an individual increases as
its fitness in its current patch decreases, all else being equal.
Because most of the models have sought to relate their
conclusions to Fretwell and Lucas’s (1970) work, the mod-
els typically have assumed that movement is effectively
instantaneous and cost free.

The fourth question has defined the form of the model
that defines movement in most previous studies of habitat
choice. In “slow” models, the fitness of an individual is
characterized by the conditions in its current patch. In
“rapid” models, demographic processes are slow on the
timescale of movement, and an individual’s short-term
fitness is characterized by the proportions of time spent
in the different patches. It is clear that the frequency of
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movement is important in deciding which framework to
use. Models that use lifetime fitness measures, like those
of Alonzo (2002), are likely to be needed to distinguish
which of these two idealized cases is more appropriate and
to investigate intermediate cases. It is important to note
that individuals may be slow in changing the proportional
time allocation, even though they move between patches
frequently (i.e., are described by a rapid movement
model). Similarly, individuals may change location very
rapidly when there is a fitness benefit to doing so under
the slow model, but they should then stay in that patch
long enough that their fitness while in the patch becomes
mainly a function of conditions in that patch.

A relatively general form that encompasses several rapid
models for the case of two habitats (A and B) describes
the dynamics of the proportion of time spent in habitat
A (denoted p), using the equation

′dp dW(p , p)
p v(p) � m(p). (1)′ F( )dt dp ′p pp

Here W is the per capita growth rate (i.e., fitness) of a
“behaviorally deviant” individual with habitat distribution
p ′ in a resident population characterized by p; the deriv-
ative is evaluated where . The function scales′p p p v(p)
the rate at which the habitat distribution changes based
on the current time allocation. In the absence of any non-
adaptive habitat change (m), the function must bev(p)
such that p remains between 0 and 1 (Abrams 1999). The
function m represents change in distribution that is un-
related to fitness, including random movement. Without
m, p can never change in a direction that reduces fitness,
but with a nonzero m such change is possible. Because all
habitats are assumed to be visited frequently in rapid mod-
els, the first of the four questions listed above is irrelevant;
conditions in other patches generally affect movement out
of a given patch. Abrams (2003, 2006a, 2006b) and Abrams
and Matsuda (2004) use versions of equation (1) with a
nonzero m. Models similar to equation (1) have more often
been used to model the dynamics of behavioral traits
within a habitat rather than between-habitat movements.

Slow models assume that an individual’s fitness can be
characterized by the patch it currently occupies rather than
by a fraction of time spent in that patch. Slow models
have been adopted in the majority of spatial simulation
models of particular species (e.g., Mooij et al. 2002; Fryxell
et al. 2004, 2005 and references therein). The movement
rule that appears to be most common in the theoretical
literature is one in which the movement rate out of a patch
is purely a function of fitness of individuals within that
patch. The number of individuals leaving patch i is then

described by , where Ni is the number of individ-N f(W)i i

uals in patch i and f is a nonnegative function that de-
creases with Wi and either approaches or equals 0 when
Wi is sufficiently large. When only two patches are present,
movement out of one is necessarily into the other. With
three or more patches, movement into a patch from the
pool of emigrants may be random or random within some
subset of patches (e.g., those having higher than the mean
fitness, as in Bernstein et al. 1999), or it may be an in-
creasing function of the fitness in that patch relative to
the mean of the other patches. If patch quality can be
assessed remotely (the assumption in Fretwell and Lucas’s
[1970] original analysis), the per capita movement out of
one patch and into another is an increasing function of
the difference in fitness between the second patch and the
first in a two-patch system (Abrams 2000). Abrams (2000)
represented the net movement from patch A to patch B
by two alternative models:

dp
p �mpN exp [l(W � W )]B Adt

� m(1 � p)N exp [l(W � W )], (2a)A B

dp
p �mpN exp (�lW )Adt

� m(1 � p)N exp (�lW ), (2b)B

where N is the total population size, Wj is instantaneous
per capita growth rate in habitat j, p is the fraction of
individuals in habitat A, m is the basal per capita move-
ment rate, and l is the sensitivity of movement to fitness.
Equation (2a) implies that movement is based on a com-
parison of fitnesses in the two habitats, while equation
(2b) implies that individuals leave one habitat at a more
rapid rate when fitness is low but are unaffected by the
current fitness in the other habitat. Ives (1992), de Roos
et al. (2002), and Persson and de Roos (2003) use equation
(2b) to describe the rate of leaving a patch. Equations (2a)
and (2b) both result in some movement to poorer-quality
patches and thus do not meet CK’s criteria for achieving
an IFD in a single-species system.

Armsworth and Roughgarden (2005a, 2005b) investi-
gated a difference equation model of population dynamics
that falls into the slow-model category. The per-individual
movement rate from patch i to j in a two-patch system
(which follows reproduction in the patch) was given by

when and by 0 when this inequalitym(w � w ) w 1 wi j i j

was reversed. Because of the discrete form of the model,
their w corresponds to in equations (2). Thisexp (W )
movement rule does not allow movement to a poorer-
quality patch. A similar rule had been used by Bernstein
et al. (1999) in a three-patch model using differential
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equations, but emigration from patch i was given by
when (W∗ is the mean fitness across∗ ∗m(W � W) W ! Wi i

all patches) and was 0 when this inequality was reversed.
These individuals then divide themselves evenly among
those patches that have fitness greater than the mean. This
rule also fits the CK criteria for achieving an IFD. Move-
ment depends on the quality of the receiving patch in-
directly because of its influence on the mean W∗. The
property of no movement to lower-quality patches is also
shared by the simulation studies of Schwinning and Ro-
senzweig (1990) and Mooij et al. (2002).

Both classes of model (rapid and slow) have the same
variables: population sizes Ni and proportional occupancy
pi. In some cases, the functions describing the dynamics
of both variables are identical in spite of different as-
sumptions about the timescale of habitat occupancy. This
is illustrated by the “replicator dynamics” proposed by
Taylor and Jonker (1978) and widely used in evolutionary
game theory. Under this model, the dynamics of the pro-
portion pi of type i in the population are given by

, where W∗ is again the mean fitness.∗dp /dt p p (W � W )i i i

CKG used replicator dynamics to illustrate the dynamics
of approaching an IFD for a single species. This model
associates fitness with each habitat (as in the slow models).
Movement dynamics are not specified, and changes in
occupancy come about because of the differential repro-
duction of different patches. As shown by CKG, this results
in an equation for the change in occupancy of patch A in
a two-patch system, , which isdp/dt p p(1 � p)(W � W )1 2

equivalent to . This equivalency∗dp/dt p p(1 � p)(dW /dp)
of fast and slow models does not occur in general. As
noted by CK, the replicator equations have the undesirable
property of allowing fixation of the population in one
habitat, because movement ceases when or 0.p p 1

Within the set of movement models reviewed here, there
are some models within each category that allow move-
ment to lower-quality patches. Hugie and Grand (1998)
reviewed empirical studies and found a small number of
cases with no movement to lower-fitness habitats. How-
ever, these were characterized by widely separated habitats
for which low rates were expected, and distinguishing be-
tween low and zero movement rates would have been
difficult. In the case of diet choice within a habitat, the
analogous prediction of zero consumption of the poorer-
quality prey was essentially never observed (Pyke 1984).
Models considered here also differ in whether they assume
some influence of other patches on movement out of a
given patch. There is little evidence to distinguish between
these alternatives, and most theoretical works mentioned
above do not cite any empirical studies to justify one al-
ternative over another.

Many previous models of habitat choice have no move-
ment dynamics; they simply assume that such movement

happens rapidly enough that habitat distributions reach a
quasi equilibrium before population densities change sig-
nificantly (Rosenzweig 1991; Abrams 1992; Křivan 1997;
Křivan and Sirot 2002; CKG; Egas et al. 2005). That equi-
librium is generally assumed to be an IFD. However, the
assumption of infinitely rapid distributional change that
achieves a stable equilibrium is inconsistent with some mod-
els of movement. For instance, under replicator dynamics
or other versions of equation (1) where the rate function

becomes quite small for some values of p, behavioralv
change becomes very slow when almost all individuals are
located in a subset of the habitats, even when it is advan-
tageous to move. This is true, for example, of the models
in Abrams (1999). Such prolonged lags might be plausible
when extended exposure to one set of conditions reduces
behavioral sampling (Abrams 1999) or when behavioral
changes occur by imitation of the behavior of other indi-
viduals (Schlag 1997). In addition, it is not clear that it is
always justified to assume that behavioral equilibrium is
reached without significant population dynamical change
(Abrams 2000). Moreover, there may be no stable behavioral
equilibrium for fixed population sizes in some cases (see
next section; Schwinning and Rosenzweig 1990; Abrams and
Matsuda 1997), or the interaction of behavioral dynamics
and population dynamics may significantly change the av-
erage values of both population sizes and behavioral traits
(Abrams 2006a, 2006b).

There is experimental evidence showing that the anal-
ogous separation of timescales between evolutionary and
population dynamical change does not occur (Yoshida et
al. 2003). The question of the rate of change of the dis-
tribution of individuals among patches is particularly im-
portant in systems in which the environment fluctuates
(e.g., Abrams 2000). Fluctuating environments also in-
crease the importance of knowing the functional form of
relationships between fitness differences and movement
rates. There is often a nonlinear relationship between the
magnitude of a difference between two states and the abil-
ity of an animal to perceive that difference (Getty and
Krebs 1985), suggesting that the rate of behavioral change
in response to a difference in those same two states will
also be nonlinear, unlike the models of Armsworth and
Roughgarden (2005a, 2005b) and Bernstein et al. (1999),
among others.

It is notable that early analyses of IFDs assumed that
the resource population instantaneously reached an equi-
librium for the current consumer population(s). In other
words, the resource dynamics occurred on the same time-
scale as the behavioral redistribution of consumer indi-
viduals. The resulting “input matching rule” of Parker
(1984) became the norm in many subsequent analyses of
IFDs (e.g., Sih 1998). Analyses of food web interactions
have found that predators may have slower dynamics than
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Table 1: Coexistence equilibria of the Cressman et al. (2004) figure 6 competition
model (eqq. [3], [4])

Point N1 N2 p q
Per capita growth rates Wij of

species i in habitat ja

1b 11 11 10/11 1/11 W1A p W1B p W2B p W2A p 0
2 20 10 19/20 0 W1A p W1B p W2B p 0; W2A 1 0
3 10 20 1 1/20 W1A p W2B p W2A p 0; W1B 1 0
4 1 12 0 1/6 W1A p W2A p W1B p 0; W2B 1 0
5 12 1 5/6 1 W1A p W1B p W2A p 0; W2B 1 0
6 19 19 1 0 W1A p W2B p 0; W1B 1 0; W2A 1 0
7 2 2 0 1 W1B p W2A p 0; W1A 1 0; W2B 1 0
8 10 1 1 1 W1A p W2A p 0; W1B 1 0; W2B 1 0
9 1 10 0 0 W1B p W2B p 0; W1A 1 0; W2A 1 0

a The per capita growth rates are given by equations (6).
b Unstable candidate ideal free distribution that would represent the equilibrium in the absence

of movement.

their prey, but the maximum turnover rates generally differ
by less than an order of magnitude (Yodzis and Innes
1992). This means that, if resources (prey) change on the
same timescale as predator behavior, it is inconsistent to
assume that the predator populations change on a much
slower timescale than their own behavior.

An Illustration of the Importance of Behavioral
Dynamics for Population Dynamics

CKG analyzed an example of the behavioral and popu-
lation dynamics of two competitors to illustrate that the
joint population dynamical equilibria in each of two iso-
lated patches might not be stable when the patches were
coupled by adaptive movement. However, behavioral and
population dynamics were explored separately, so it was
not clear how the combined behavioral-population system
would change over time. This example is analyzed in more
detail here to illustrate the importance of modeling the
joint dynamics of populations and behaviors and also to
illustrate that equally plausible movement rules can pro-
duce dramatically different population dynamics.

The system in question consists of two competing spe-
cies that are each capable of growing in two different
patches. The within-patch fitness is given by the Lotka-
Volterra competition equations, and so the populations
change based on

dN K � N p � a N q1 1A 1 12A 2p r pN � r (1 � p)N1A 1 1B 1( )dt K1A

K � N (1 � p) � a N (1 � q)1B 1 12B 2# ,[ ]K1B

(3a)

dN K � N q � a N p2 2A 2 21A 1p r qN � r N (1 � q)2A 2 2B 2( )dt K2A

K � N (1 � q) � a N (1 � p)2B 2 21B 1# ,[ ]K2B

(3b)

where the species are labeled 1 and 2, habitats are A and
B, and p and q represent fractions of the populations in
habitat A. In the example from CKG (their fig. 6), the
parameters are , , ,a p 9 a p 0.1 a p 0.1 a p12A 12B 21A 21B

, , , , , ,9 r p 1 r p 0.1 r p 0.1 r p 1 K p 191A 1B 2A 2B 1A

, , and . This set of parametersK p 2 K p 2 K p 191B 2A 2B

means that the two competitors are symmetric in their
abilities in the two patches: competitor 1 has a higher
carrying capacity but is more vulnerable to interspecific
competition in patch A than in B. The reverse is true for
competitor 2. CKG assumed that for each pair of popu-
lation densities, the equilibrium distribution across hab-
itats, given by p and q, was achieved before any significant
change in population densities. The single point where
both competitors occupy both patches and have zero pop-
ulation growth ( ; ; ) wasN p N p 11 p p 10/11 q p 1/111 2

shown to be unstable; this pair of population sizes resulted
in two alternative locally stable points where each species
occupied a different habitat ( and , orp p 1 q p 0 q p

and ).1 p p 0
It is clear that neither of the species can be excluded

globally, because each species can increase in either patch
when it is rare and the other species is at its carrying
capacity in both patches. To make some predictions about
the dynamics of the system, we need to examine all of the
potential coexistence equilibria to determine whether any
of them can be stable, in terms of both population density
and between-patch distribution. Table 1 lists the nine po-
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tential coexistence equilibria, including the candidate IFD
point mentioned above, where both species are present
globally in a system without movement. The eight addi-
tional points are characterized by having one or both spe-
cies restricted to a single habitat. It is clear from the table
that none of these equilibria is a two-species IFD because,
in each case, the patch in which one species is missing has
a higher payoff than the patch that is occupied by that
species. We conclude that equations (3), augmented so
that p and q change toward the patch currently having a
higher fitness, have no stable equilibrium. This conclusion
does not depend on the details of the movement rule,
provided that the movement does not significantly perturb
densities from the equilibria listed in the table. Because
species cannot go extinct, as noted above, there must be
fluctuations in their population sizes. However, the nature
of the fluctuations then depends on the coupled dynamics
of spatial distribution and population size. Furthermore,
it is not clear that “nonideal” movement will produce the
same population dynamical equilibria that are listed in
table 1.

We illustrate the dynamics produced by several different
models. We begin with a system in which the replicator
equations (Taylor and Jonker 1978; CKG) describe the
dynamics of the habitat distribution:

dp K � N p � a N q1A 1 12A 2p v p(1 � p) r1A1 { ( )dt K1A

K � N (1 � p) � a N (1 � q)1B 1 12B 2�r ,1B[ ]}K1B

(4a)

dq K � N q � a N p2A 2 21A 1p v q(1 � q) r2A2 { ( )dt K2A

K � N (1 � q) � a N (1 � p)2B 2 21B 1�r ,2B[ ]}K2B

(4b)

where is a scaling constant reflecting rates of behavioralvi

change and p and q are the proportions of individuals in
habitat A for species 1 and 2, respectively. When both

, these equations represent a case in which behav-v k 1i

ioral change is much more rapid than population dynam-
ical change. However, for fixed population densities, the
absolute values of and simply reflect the temporalv v1 2

units and do not affect dynamics. Figure 1 shows the vector
field in phase space produced by this pair of behavioral

equations for the population densities at three of the final
eight equilibria listed in table 1 plus the densities at equi-
librium point 1 ( ). In all cases, the plotsN p N p 111 2

show that the values of p and q at the equilibrium (the
center of the small circle in each panel) do not represent
stable states for the behavioral dynamics. The point at
( ; ; ) is the only popu-N p N p 11 p p 10/11 q p 1/111 2

lation dynamical equilibrium when there is movement and
the only candidate IFD for both species, but as originally
shown in CKG, the behavioral dynamics make this point
unstable. CKG noted that this would result in complete
habitat segregation ( and , or andp p 1 q p 0 q p 1

). However, because these distributional equilibriap p 0
are not population dynamical equilibria for N p N p1 2

, it was not clear from CKG what long-term dynamics11
are expected in the system.

Although it was not possible to perform a global stability
analysis of this four-dimensional system (eqq. [3], [4]),
only three qualitatively different types of dynamics were
observed in numerical integrations of parameter sets with
equal rate parameters . For small (less thanv p v p v v1 2

approximately 2.6858), the equilibrium at ,p p 10/11
, and became locally (and appar-q p 1/11 N p N p 111 2

ently globally) stable. This is understandable based on the
fact that the stable population dynamics dominate the un-
stable behavioral dynamics when the latter are slow
enough. When was significantly larger than this thresholdv
value, the system was characterized by large-amplitude cy-
cles in which p and q were antiphase but the global den-
sities of the two species fluctuated in phase. Figure 2 shows
the dynamics that occur with a rate constant ( )v p 2.7
slightly above the stability threshold for initial conditions
given in the figure legend. The exact trajectory depended
on initial conditions, but all conditions eventually resulted
in the cycles shown on the right-hand side of the figure.
The amplitude of the cycles expands as the behavioral rate
constants increase. The cycles can be understood from
figure 1D, which shows the behavioral dynamics starting
with both populations at the candidate IFD equilibrium
point with . The equilibrium at andN p 11 p p 1 q pi

means that both species occupy the habitat where they0
have a carrying capacity of 19. When densities are close
to this point, figure 1A applies, and the species switch so
that each is almost entirely in the habitat where its carrying
capacity is 2. This leads to a population crash in both
species. As they approach the carrying capacity, figure 1C
applies, and adaptive movement again provokes another
switch of habitats.

A third outcome of numerical integrations was observed
at large values of . In this case, the dynamics were initiallyv
cyclic, but the frequencies of each species in a given habitat
approached 0 or 1 so closely that the proportion of one
species in one habitat was eventually rounded to 1 or 0



Figure 1: Vector fields showing the behavioral dynamics defined by the replicator equations for the cases from Cressman et al.’s (2004; CKG) figure
6 example for four different pairs of (constant) total population densities. Arrows give the direction and magnitude of the change in habitat
distributions across a grid of potential distributions of the two species between two habitats, given the replicator dynamics of equations (4). In each
case, the coexistence equilibrium being examined is characterized by a distribution of individuals that lies at the center of the small circle (see table
1). A, The point , is not locally stable when ; the locally stable point for these population densities is , .p p 1 q p 0 N p N p 19 q p 1 p p 01 2

However, this behavioral equilibrium is not a population dynamic equilibrium; both per capita growth rates are negative at this point. B, N p1

and has a population dynamical equilibrium point where most of the species-1 individuals are in patch 1 and all of the species-212 N p 12

individuals are in patch 2 ( ; ), but the plot again shows that this is behaviorally unstable, with the system moving to , .p p 5/6 q p 1 p p 1 q p 0
C, has a population dynamical equilibrium at , , but the behavioral dynamics at this point are not at equilibrium; theN p N p 2 p p 0 q p 11 2

plot shows that both species switch habitats completely to end up at , . Plot D corresponds to the equilibrium studied in detail by CKG:p p 1 q p 0
, , . However, this is again behaviorally unstable; the vector field shows that the system moves to either ,N p N p 11 p p 10/11 q p 1/11 p p 11 2

or , , depending on the initial deviation from the equilibrium.q p 0 q p 1 p p 0
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Figure 2: Dynamics of the full replicator dynamics model (eqq. [3], [4])
for the case of , with parameters as in figure 1 (Cressmanv p v p 2.71 2

et al.’s [2004] fig. 6), and initial values , , , andN p 1 N p 1 q p 0.92 1

. The ultimate dynamics are cycles, but the system first approachesp p 0.9
the unstable equilibrium at , , . It then ap-N p N p 19 p p 1 q p 01 2

proaches the second unstable equilibrium at withN p N p 11 p p1 2

and , but the cycles around that point expand; the final10/11 q p 1/11
dynamics shown appear to persist indefinitely. The top panel shows total
population densities of the species (solid line, N1; dashed line, N2), and
the bottom panel shows the proportions in habitat A (solid line, species
1; dashed line, species 2).

by the numerical integrator (Mathematica 5.2 [Wolfram
2005] command NDSolve with an AccuracyGoal of infin-
ity; this occurred for , given initial conditions closev p 8
to the interior equilibrium point, and appears to occur for
all initial conditions when ). Although a more ac-v p 10
curate integrator may have yielded persistent cycles in this
case, population densities become so low that the popu-
lation of at least one species in one patch would become
0 in most finite populations. At that point, the cycles would
stop, and the replicator dynamics would imply that the
species that was absent from a patch could not recolonize
it. The initial extinction in all of the numerical results
occurred in the patch where a species had its greater car-

rying capacity ( ). This was apparently because theK p 19
lowest densities of a given species in a patch were observed
when individuals moved out of their high-K patch. Thus,
the end result was a stable point with , ,p p 5/6 q p 1

, and or the “mirror image” point withN p 12 N p 11 2

, , , and . In other words,p p 0 q p 1/6 N p 1 N p 121 2

one species occurs alone in the habitat where it has lower
growth parameters, and both species share the other
habitat.

The replicator equations can be made somewhat more
realistic by allowing behavioral mutation to occur. This
may be accomplished by adding the term m(1 � p) � mp
to equation (4a) and adding the same term, with q sub-
stituted for p, to equation (4b). Random movement to the
other habitat is one form of behavioral mutation that can
be represented by such an expression. In this modified
replicator model, three types of attractors were observed
for the full four-equation system. The first involved cycles
that were similar in form to those shown at the right-hand
side of figure 2. Given initial populations close to the point
with both species at equilibrium in two separate habitats
( , , ), cycles were ob-p p 10/11 q p 1/11 N p N p 111 2

served for all values of larger than a threshold value thatv
decreased with increasing values of the mutation param-
eter m. The minimum for cycles in the absence of mu-v
tation/random movement was approximately 2.6858;
when , that minimum was reduced to ap-m p 0.001 v
proximately 1.975. However, a sufficiently large value of
m led to alternative stable points, as noted below. On the
cycling attractor, larger values of made the cycles in pv
and q more closely approach a square waveform, as shown
by the difference between figure 3A and figure 3B. The
period of the cycles also decreases with increasing ; forv

in figure 3B, the period is approximately an orderv p 500
of magnitude less than the period for in figure 3A.v p 4
More rapid behavior changes the relative duration of the
two phases of this population cycle in such a way that
each species spends a larger proportion of its time being
dominant in the habitat where it has a lower carrying
capacity; this proportion increases from 0.2633 in figure
3A to 0.7358 in figure 3B. Thus, the mean population
densities of both species decline significantly as their rate
of behavioral change increases, from 13.600 in figure 3A
to 6.535 in figure 3B.

The second type of outcome for replicator equations
with added random movement occurred when initial den-
sities were close to the candidate IFD point but behavioral
change was slower; here, there was a stable equilibrium
with equal total populations of the two species but with
each species predominant in the habitat where it had the
larger carrying capacity. The total density of each species
was only slightly under 11 (the candidate IFD density) in
models with random movement, when the rate parameter
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Figure 3: Dynamics of the full replicator dynamics model (eqq. [3], [4]), augmented with a behavioral mutation rate of for the cases of�6m p 10
and , with parameters as in figure 1 (Cressman et al.’s [2004] fig. 6). Note that the time axis spans 2,000 time units forv p v p 4 v p v p 5001 2 1 2

A but 200 time units for B. The left-side plots show total population densities of each species (solid line, N1; dashed line, N2), and the right-side
plots show the proportions in habitat A (solid line, species 1; dashed line, species 2). Because the fluctuations in total population size for the two
species are synchronous, the two lines are superimposed.

m was very close to 0, but it decreased rapidly as m in-
creased. For example, produced equilibriumm p 0.001
densities of 6.851 when .v p 1

The final type of outcome was a pair of locally stable
equilibria in which one species was much more abundant
than the other and both were found mainly in the habitat
where the abundant species had a higher K. A larger value
of m was required to produce this third outcome when the
rates of adaptive habitat selection, , were larger. Often thev
less abundant species was excluded entirely. If andv p 3

, one of the equilibrium points is ,m p 0.01 p p 0.8662
, , and ; the otherq p 0.9737 N p 17.666 N p 0.41581 2

(mirror image) point is , ,p p 0.0263 q p 0.1338 N p1

, and . Each outcome reflects the0.4158 N p 17.6662

source-sink dynamics that occur when one species reaches
a high enough density in the habitat where it has a high
K; migrants to the other habitat, combined with the large
competitive effect in that other habitat, greatly reduce or
exclude the second species globally. (Similar outcomes in
a random-movement model were observed by Amarase-
kare and Nisbet [2001] and by Abrams and Wilson
[2004].) This particular set of rate constants also had a
cyclic attractor similar to that illustrated in figure 3, which
was reached when initial conditions were close to the in-
terior equilibrium at and .p p 10/11 q p 1/11

Figure 4 shows the dynamics of the same model of
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competition after assuming that movement between hab-
itats is described by equation (2a), for two choices for the
movement constants m and l. The distributional dynamics
are given by the following two equations:

dp
p p(1 � p)(W � W ) � m (1 � p)1A 1B 1dt

# exp [l (W � W )] � m p exp [l (W � W )],1 1A 1B 1 1 1B 1A

(5a)

dq
p q(1 � q)(W � W ) � m (1 � q)2A 2B 2dt

# exp [l (W � W )] � m q exp [l (W � W )],2 2A 2B 2 2 2B 2A

(5b)

where the fitnesses are given by the per capita growth rates
from the Lotka-Volterra equations:

K � N p � a N q1A 1 12A 2W p r , (6a)1A 1A( )K1A

K � N (1 � p) � a N (1 � q)1B 1 12B 2W p r , (6b)1B 1B[ ]K1B

K � N q � a N p2A 2 21A 1W p r , (6c)2A 2A( )K2A

K � N (1 � q) � a N (1 � p)2B 2 21B 1W p r . (6d)2B 2B[ ]K2B

The dynamics of the total population size are still given
by equations (3). We assume here that the two species
share the same value of m and the same l. The baseline
movement rate m is somewhat analogous to the random-
movement parameter in the extended replicator equation;
it specifies the per capita rate of movement when both
habitats confer equal fitness. However, m also affects the
speed of adaptive change. If m is relatively small but the
sensitivity to fitness difference l is large, the system does
not exhibit cycles, unlike the corresponding case for equa-
tions (3) and (4) (i.e., the four-dimensional model with
replicator dynamics for behavior). Instead, there are three
alternative locally stable equilibrium points: (1) the point
that approximates the candidate IFD point; (2) two points
at which one of the two species is totally absent or very
rare while the other exhibits “undermatching” (Hugie and
Grand 1998), in that it is slightly below its carrying capacity
in its high-K habitat and slightly above its K in its low-K

habitat. These three points correspond qualitatively to the
stable equilibrium points for the model with replicator
equations augmented by random movement. An example
of the approach to one of the near-exclusion equilibria is
shown in figure 4A. Cycling similar in form to that shown
in figure 3 occurs for relatively high fitness sensitivity and
relatively high baseline movement, as shown in figure 4B
( , ). However, the cycles have a muchm p 0.1 l p 5
shorter period than cycles produced by replicator dynam-
ics with small mutation/random movement rates, even for
the very high values of shown in figure 3B. The cyclingv
outcome when equation (2a) defines behavior also differs
from cycles under the replicator equations in having lower
cycle amplitudes. It is worth noting that raising the fitness
difference in the exponential terms of equation (2a) to the
power of 3 (making behavioral dynamics relatively less
sensitive to small differences in fitness and more sensitive
to large differences) eliminates cycles entirely, given the
parameters used in figure 4B.

This same example was explored using several addi-
tional slow-behavior models. Using equation (2b) for the
movement model produced a range of dynamics similar
to those shown in figure 4, although there are quantitative
differences. The cycles produced in this case do not result
in as large a concentration of species in their high-K
habitats, and so the mean densities are much lower (and
cycle periods are much shorter). Another slow model can
be produced by changing equation (2a) so that it satisfies
the requirements sufficient for the stability of a single-
species IFD presented in CK. In this case, the movement
rate from habitat A to habitat B is mp{N exp [l(W �B

if and 0 if . The Armsworth-W )] � 1} W 1 W W ≤ WA B A B A

Roughgarden model, mentioned above (Armsworth and
Roughgarden 2005a, 2005b), is a simpler model that also
satisfies the CK criteria for attaining a single-species IFD.
Simulations were carried out using both of these models,
and they produced results with substantial quantitative
differences from those produced by equation (2a). For
example, low movement rates in the Armsworth-Rough-
garden model resulted in the candidate IFD point being
locally (and apparently globally) stable. The dynamics at
higher movement rates were more like those of the repli-
cator equations than those of equation (2a). This seems
to be the result of the lack of movement to lower-fitness
patches. Although many more models of movement and
models of interaction could be explored, the numerical
analysis of several movement rules for this example of
two-species competition is sufficient to show that the
type of behavioral dynamics can have a large effect on
population dynamics.
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Figure 4: Dynamics of the competition model with movement based on equation (2a) (equivalently, eqq. [5], [6]) for two pairs of movement
parameters m and l. The plots show the proportions of both species in habitat A (right) and the total population densities across both patches
(left; populations are synchronous in B). As in figure 3, species 1 is described by the solid line and species 2 is described by the dashed line. Initial
densities are close to the candidate ideal free distribution point: , , , and . In each case shown, the dynamicsN p 10 N p 1 N p 1 N p 10.011A 1B 2A 2B

are only one of three alternative attractors that exist for each system.

How Representative Are the Results from This Example
of Two-Species Competition?

The type of cycling observed in this system is likely to
be relatively rare in two-patch Lotka-Volterra competitive
systems. Cycles here depend on the very large difference
in competition coefficients between the two patches and
on the fact that each species has a much greater effect
on its competitor in the habitat where its own intrinsic
growth rate and carrying capacity are low. The instability
of the candidate IFD that drives the cycles occurs because
the movement of a small number of species-j individuals
into the patch where i has a high density greatly reduces
the fitness of i in that patch, prompting movement of i

out of that patch and thus further immigration of species
j. It is straightforward to show that cycles cannot occur
in the Lotka-Volterra competition model (under any of
the types of trait dynamics discussed here) when each
competition coefficient has the same value in both
patches (Křivan and Sirot 2002; CKG). In a more typical
case of two-species Lotka-Volterra competition, it is likely
that two habitats will differ in some parameters but not
have the parameter values that can destabilize an internal
equilibrium. For these cases, a system with some random
component to its movement will likely cause departures
from equal fitness across habitats, given nonzero move-
ment to poorer patches. A large random component has
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the potential to greatly alter the outcome of the inter-
action (Amarasekare and Nisbet 2001; Abrams and Wil-
son 2004). However, most metapopulation models based
on two-species Lotka-Volterra competition will not ex-
hibit the cycles shown here. The conditions for stability
of IFDs in systems having three or more competitors are
still largely unknown.

There is a considerable literature arguing that the
consumer-resource models are more appropriate than the
Lotka-Volterra equations for most cases of resource com-
petition between two or more competitors (Schoener
1986). For such models, there is considerable evidence
that distributions having equal fitness may be stable
or unstable, depending on the dynamics of behavior.
Consumer-resource interactions are normally charac-
terized by saturating consumer functional responses
(Jeschke et al. 2002, 2004). As pointed out by Matsuda
and Abrams (1994) and Abrams and Matsuda (1997), a
type-2 consumer functional response introduces insta-
bility in the resource species’ behavioral dynamics, and
this often drives fluctuations in both populations
(Schwinning and Rosenzweig 1990; Abrams 2007). When
some or all of the resources are biological species, the
system may have a candidate IFD where both species are
distributed equally across the two patches when these
have similar environmental parameters. However, the
saturating consumer response makes it advantageous for
their prey to aggregate, leading to two alternative stable
IFDs where the prey are mostly or entirely in one of the
two patches. Abrams (2007) shows that, even for fixed
population densities, the equilibrium at which both pred-
ator and prey are present and equally fit in both patches
is unstable for a very wide range of parameters. Because
food webs contain many predator-prey links, it is likely
that the nature of behavioral dynamics will be crucial in
predicting habitat distributions of many species. Because
competitors are often simply consumers that share living
resources, this same mechanism is likely to operate for
many sets of competitors.

Concluding Remarks

One of the more general questions related to this work
on habitat selection is whether adaptive behavior must be
taken into account in studying the population dynamics
of interacting species (Bolker et al. 2003). CKG used a
comparison of systems with no movement and systems
with adaptive movement to argue for the importance (or
unimportance) of behavior in determining habitat distri-
butions. This interpretation is valid if the state without
adaptive behavior is taken to be one with no movement.
However, it could equally well be argued that the appro-
priate comparison is between systems with random or

adaptive movement. It has long been known that random
movement of individuals in metapopulations generally
changes population sizes in patches, compared to the same
system without movement (Levin 1974; Holt 1985). Ran-
dom movement can also greatly alter interactions between
competing species in a patchy habitat because of source-
sink phenomena (Amarasekare and Nisbet 2001; Abrams
and Wilson 2004). Introducing even a small amount of
random migration (i.e., using eqq. [2] with andl p 0

) creates new population dynamical equilibria inm K 1
the two-patch Lotka-Volterra example analyzed here.
These altered equilibria represent one of the reasons why
it is important to know something about the behavioral
dynamics of movement, which may include a large or a
small component of random movement. There are likely
to be very few systems of interacting species in hetero-
geneous environments in which introducing adaptive
movement does not alter the population sizes produced
by random movement. This conclusion remains true re-
gardless of whether an IFD is achieved by some or all
species in the case of adaptive movement.

An important reason for modeling behavioral and
population dynamics together is the fact that almost all
populations fluctuate significantly in population size
(Pimm 1991), and the population dynamics of any spe-
cies will depend in part on how rapidly it can adapt
behaviorally to changes in the spatial pattern of abun-
dance of predators, competitors, and resources. There
will always be some lag between changes in populations
and/or growth parameters and achieving the new be-
havioral attractor. Previous work on adaptive movement
of one of several interacting species (Abrams 1999, 2000;
Abrams and Matsuda 2004) clearly shows that the details
of behavioral dynamics (both functional form and rate
constants) can have a major effect on such basic quan-
tities as mean population sizes in systems with fluctuating
populations. That message is reinforced by the example
analyzed here. What is new here is the fact that the local
population fluctuations can themselves be driven by the
dynamics of adaptive movement.

Fretwell and Lucas (1970) clearly hoped that their con-
ceptual framework of the “ideal free distribution” could
provide a general explanation for habitat distributions. It
is now clear that many species are not characterized by
IFDs (Kennedy and Gray 1993), but the reasons for the
deviations and the magnitudes of those deviations remain
subjects of contention. We hope that this work will mo-
tivate behavioral biologists to consider interspecific inter-
actions as one of the potential factors that can prevent
attainment of IFDs in natural systems. This will require
more work to determine the appropriate model of the
behavioral dynamics of movement.



Behavioral Dynamics and Patch Distributions 517

Acknowledgments

P.A.A. and R.C. thank the Natural Sciences and Engi
neering Research Council of Canada for financial support.
V.K. was supported by the Grant Agency of the Czech
Academy of Sciences (A100070601). P.A.A. thanks W. G.
Wilson for comments on an early draft that grew into this
comment.

Literature Cited

Abrams, P. A. 1992. Predators that benefit prey and prey that harm
predators: unusual effects of interacting foraging adaptations.
American Naturalist 140:573–600.

———. 1999. The adaptive dynamics of consumer choice. American
Naturalist 153:83–97.

———. 2000. The impact of habitat selection on the heterogeneity
of resources in varying environments. Ecology 81:2902–2913.

———. 2003. Can adaptive evolution or behavior lead to diversi-
fication of traits determining a trade-off between foraging gain
and predation risk? Evolutionary Ecology Research 5:653–670.

———. 2006a. The effects of switching behavior on the evolutionary
diversification of generalist consumers. American Naturalist 168:
645–659.

———. 2006b. The prerequisites for and likelihood of generalist-
specialist coexistence. American Naturalist 167:329–342.

———. 2007. Habitat choice in predator-prey systems: spatial in-
stability due to interacting adaptive movements. American Nat
uralist (forthcoming).

Abrams, P. A., and H. Matsuda. 1993. Effects of adaptive predatory
and anti-predator behavior in a two prey–one predator system
Evolutionary Ecology 7:312–326.

———. 1997. Prey evolution as a cause of predator-prey cycles.
Evolution 51:1740–1748.

———. 2004. Consequences of behavioral dynamics for the popu-
lation dynamics of predator-prey systems with switching. Popu-
lation Ecology 46:13–25.

Abrams, P. A., and W. G. Wilson. 2004. Coexistence in metacom-
munities due to spatial variation in resource growth rates: does
R∗ predict the outcome of competition? Ecology Letters 7:929–
940.

Alonzo, S. H. 2002. State-dependent habitat selection games between
predators and prey: the importance of behavioural interactions
and expected lifetime reproductive success. Evolutionary Ecology
4:759–778.

Amarasekare, P., and R. Nisbet. 2001. Spatial heterogeneity, source
sink dynamics, and the local coexistence of competing species.
American Naturalist 158:572–584.

Armsworth, P. R., and J. E. Roughgarden. 2005a. Disturbance induces
the contrasting evolution of reinforcement and dispersiveness in
directed and random movers. Evolution 59:2083–2096.

———. 2005b. The impact of directed versus random movement
on population dynamics and biodiversity patterns. American Nat-
uralist 165:449–465.

Bernstein, C., A. Kacelnik, and J. R. Krebs. 1988. Individual decisions
and the distribution of predators in a patchy environment. Journal
of Animal Ecology 57:1007–1026.

———. 1991. Individual decisions and the distribution of predators
in a patchy environment. II. The influence of travel costs and

structure of the environment. Journal of Animal Ecology 60:205–
225.

Bernstein, C., P. Auger, and J.-C. Poggiale. 1999. Predator migration
decisions, the ideal free distribution, and predator-prey dynamics.
American Naturalist 153:267–281.

Bolker, B. M., M. Holyoak, V. Křivan, L. Rowe, and O. Schmitz.
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