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abstract: This article verifies that the ideal free distribution (IFD)
is evolutionarily stable, provided the payoff in each patch decreases
with an increasing number of individuals. General frequency-depen-
dent models of migratory dynamics that differ in the degree of animal
omniscience are then developed. These models do not exclude mi-
gration at the IFD where balanced dispersal emerges. It is shown
that the population distribution converges to the IFD even when
animals are nonideal (i.e., they do not know the quality of all
patches). In particular, the IFD emerges when animals never migrate
from patches with a higher payoff to patches with a lower payoff
and when some animals always migrate to the best patch. It is shown
that some random migration does not necessarily lead to under-
matching, provided migration occurs at the IFD. The effect of pop-
ulation dynamics on the IFD (and vice versa) is analyzed. Without
any migration, it is shown that population dynamics alone drive the
population distribution to the IFD. If animal migration tends (for
each fixed population size) to the IFD, then the combined migration-
population dynamics evolve to the population IFD independent of
the two timescales (i.e., behavioral vs. population).

Keywords: competition, evolutionarily stable strategy, habitat choice,
ideal free distribution, migration dynamics, dispersal.

The ideal free distribution (IFD; Fretwell and Lucas 1970)
is a theoretical concept that assumes freely moving indi-
viduals between food or habitat patches. These ideal an-
imals have a perfect knowledge of their environment and
the same competitive abilities, and they settle in the patch
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that provides them with the highest resource intake rate.
This results in a spatial distribution under which no in-
dividual can unilaterally increase its fitness (or payoff) by
changing its strategy (i.e., its choice of habitat). This theory
assumes that the patch quality does not change over time
(e.g., because of patch exploitation) and that consumers
share resources in the sense that an increase in the number
of consumers in a patch decreases the payoff of each con-
sumer in the patch. Thus, if consumers do not interfere
with each other, then they should all be in the best patch.
However, as the number of consumers in the best patch
increases, there will be some interference between them.
For example, two consumers may hunt for a single food
item, which leads to a decrease in payoff. Because fitness
in any patch depends on the population distribution, the
IFD concept is an example of a frequency-dependent pro-
cess: decisions where to settle depend on the current pop-
ulation distribution.

The IFD has been repeatedly given in the literature (e.g.,
Parker 1978, 1984; Pulliam and Caraco 1984; Pulliam and
Danielson 1991; Kennedy and Gray 1993; Morris 2003)
as an example of the evolutionarily stable strategy (ESS).
There are two conditions that an ESS must satisfy (May-
nard Smith 1982): there is no other strategy that an in-
dividual can adopt (i.e., no other patch choice) with a
higher payoff and the strategy cannot be invaded by rare
individuals playing another strategy. The first condition is
the Nash equilibrium from game theory. In the literature
on the IFD, most authors consider only this condition and
pay no attention to the second ESS condition. Therefore,
the question arises whether every IFD is automatically an
ESS. This is answered in “The IFD Is an ESS.”

The IFD has become such a powerful tool for several
reasons. First, the Nash equilibrium condition, that in-
dividual payoff in all inhabited patches must be the same,
allows one to easily compute the IFD. More important,
the (approximate) IFD has been observed in many em-
pirical studies (for reviews, see Milinski and Parker 1991;
Kacelnik et al. 1992; Tregenza 1995; Hugie and Grand
1998). Thus, the IFD often predicts the outcome of animal
migration between patches without explicitly describing
this migration. On the other hand, in many other exper-
iments reviewed in this literature, populations are not at
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the IFD or evolving in this direction. It is therefore im-
portant to know which patterns of movement between
patches lead to the IFD and which do not.

Explicit models of migration (reviewed in Briggs and
Hoopes 2004) are abundant in ecological literature on
species stability, where they show that spatial heterogeneity
can stabilize population dynamics. The relation between
population dynamics, migration, and the IFD has been
analyzed in studies on the evolution of dispersal (e.g.,
Gadgil 1971; Hastings 1983; Holt 1985; Johnson and
Gaines 1990; McPeek and Holt 1992; Houston et al. 1995;
Holt and Barfield 2001; Hutson et al. 2003; Padrón and
Trevisan 2006; DeAngelis et al., forthcoming). The pop-
ulation distribution in these studies is the outcome of two
processes: population growth in local patches and migra-
tion between patches. If individuals do not migrate at all,
then at the population equilibrium, their fitness measured
by the per capita population growth rate is the same (and
equal to zero) in all occupied patches. Thus, the IFD is
also achieved even when there is no migration. Now, sup-
pose that population numbers are fixed but individuals do
migrate. The migration rates then define a distribution
that will correspond to the IFD only if these rates satisfy
special conditions (called “balanced dispersal” in McPeek
and Holt 1992). If passive migration is unconditional in
the sense that the migration rate between any two patches
is the same in both directions, unbalanced dispersal rates
lead to a higher density in the poor patch and a lower
density in the good patch when compared with the IFD.
This phenomenon is known as “undermatching” (Milinski
1988; Kennedy and Gray 1993; Houston et al. 1995; Jack-
son et al. 2004). In the context of the evolution of dispersal,
undermatching leads to the prediction that unconditional
dispersal should be selected against in spatially heteroge-
neous but temporally constant environments (Hastings
1983; Holt 1985). The studies on the evolution of dispersal
also consider conditional dispersal (McPeek and Holt
1992; Padrón and Trevisan 2006), in which the per capita
dispersal rate depends solely on the habitat type and so is
not influenced by habitat fitness based on local population
density. It is shown that conditional per capita balanced
dispersal rates corresponding to the IFD at equilibrium
population densities cannot be invaded by mutants with
different dispersal rates. A similar result was also observed
recently in simulations of an individual-based model with
density-dependent migration rates combined with popu-
lation dynamics (DeAngelis et al., forthcoming).

In this article, our migration analysis begins by assum-
ing that overall population density is fixed, and we ask,
“What are the migration rules that correspond to the IFD?”
We develop several density-dependent models of migra-
tory dynamics that differ in the degree of animal omnis-
cience, and we show that migration rates in these models

converge to those corresponding to balanced dispersal. In
particular, migration does not cease when the IFD is
reached, which agrees with experimental observations sur-
veyed by Hugie and Grand (1998, 2003). A common fea-
ture of these models that lead to the IFD is that individuals
do not migrate to patches with lower payoff. Such behavior
is most realistic when animals receive sensory cues for
differences in patch quality (e.g., the visual cues for re-
source input rates in experiments on ducks [Harper 1982]
and sticklebacks [Milinski 1988]). An indirect consequence
of these models is that (per capita) emigration rates are
low from patches with high payoff.

There is empirical evidence to support the hypothesis
that individuals move more readily from patches with low
payoff. For instance, field observations by Hodek and
Honěk (1996; see also Osawa 2000) show that ladybird
beetles stay longer in high-quality-resource patches (i.e.,
where the resource density of aphids is high). That is, per
capita emigration rates from a given patch are inversely
related to its quality. However, conclusions concerning im-
migration patterns based on such data are less convincing
because either the destination patch of migrating animals
is not recorded (but see Osawa [2000], who suggests that
ladybirds can sense the odor of aphids in distant patches
to better direct their movements) or there is evidence of
some randomness in the choice of destination.

To model these empirical results, we also consider the
consequences of suboptimal migration patterns that in-
clude a random component. For two-patch models, Hugie
and Grand (1998) show how undermatching occurs when
the nonrandom component satisfies the following con-
ditions: animals do not migrate to patches with lower pay-
off and individual migration rates change continuously as
patch densities change. We extend this result to multi-
habitat environments. We also show the surprising result
that the IFD may still emerge in suboptimal circumstances
that are far from ideal when either of these conditions are
not satisfied. This gives another indication of the robust-
ness of the IFD outcome beyond the original framework
of Fretwell and Lucas (1970).

Our analysis also studies the effect of combining pop-
ulation dynamics with migration dynamics. We rewrite
population dynamics in the form of a density-dependent
replicator equation that clearly shows that if individuals
do not move between patches at all, the IFD will be
achieved at the population equilibrium due solely to
changes in overall population numbers. Second, we com-
bine this equation with migration dynamics and give con-
ditions under which the combined population-migration
dynamics converge to the IFD irrespective of the relative
timescales between these two processes.



386 The American Naturalist

The IFD Is an ESS

In this section, we fix population size and consider a single
species in H habitats that have different payoffs, Vi(mi) in
habitat i, which depend on the species’ abundance mi in
this habitat. When is the total pop-…M p m � � m1 H

ulation size in all patches, the population distribution
among patches is given by the vector p p

, where pi is the pro-(p , … , p ) p (m /M, … , m /M)1 H 1 H

portion of individuals in patch i. Because , them p p Mi i

payoff Vi(piM) in patch i is then a function of the pop-
ulation distribution p and the overall abundance M. We
assume that the payoff in patch i decreases with increasing
abundance in that patch (i.e., we do not consider an Allee
effect) and that there exists a unique carrying capacity Ki

for which individual payoff is zero ( ). An ex-V(K ) p 0i i

ample of such a payoff function is the logistic per capita
population growth rate , but our re-V(m ) p r (1 � m /K )i i i i i

sults in this article do not rely on this specific form. We
order patches so that the intrinsic growth rates r pi

satisfy . Fretwell and Lucas (1970)…V(0) r 1 r 1 1 ri 1 2 H

considered a fixed number of individuals that freely mi-
grate between patches and that know perfectly the payoff
in all patches (i.e., ideal animals), and they called the re-
sulting distribution the ideal free distribution (IFD). They
predicted that under the IFD the first k patches are oc-
cupied and that the payoff in all occupied patches is the
same and at least as large as the payoff in unoccupied
patches (i.e., , ).…V (p M) p p V (p M) p V V ≥ r1 1 k k k�1

In the case of a monomorphic population, is inter-∗pi

preted as the proportion of time an average individual
spends in patch i. Average payoff is then calculated as

. However, because∗ ∗ ∗ ∗…V p p V (p M) � � p V (p M)1 1 1 k k k

payoffs in every occupied patch are the same under the
IFD, individual payoff is independent of the strategy. In
other words, if there is a small proportion of individuals
with a different strategy in a resident˜ ˜p̃ p (p , … , p )1 H

population with the IFD strategy , then∗ ∗ ∗p p (p , … , p )1 H

the average payoff of these mutants will be the same as
the payoff of residents because ∗ ∗ …p V (p M) � �1 1 1

. Here we∗ ∗ ∗ ∗…˜ ˜p V (p M) p pV (p M) � � p V (p M) p Vk k k 1 1 1 k k k

use the fact that be-∗ ∗˜ ˜p � … � p p p � … � p p 11 k 1 k

cause only the first k patches are occupied both by residents
and by mutants (if mutants occupied patch i with ,i 1 k
then their payoff would be lower than the average payoff).

This equality of resident and mutant payoffs means that
the definition of the IFD does not exclude the possibility
that an initially rare subpopulation can spread in the res-
ident population. In other words, the Fretwell and Lucas
(1970) definition of the IFD does not secure stability of
the distribution. To avoid this possibility that the IFD is
unstable with respect to spatial perturbations, we need to
verify that the above IFD can withstand these invasions

by showing that it satisfies the second ESS stability con-
dition (Maynard Smith 1982). Appendix A in the online
edition of the American Naturalist proves that for a single
population, the IFD automatically satisfies the stability
condition and is therefore an ESS. This result is by no
means trivial because it does not hold in general for more
than one population. In particular, Cressman et al. (2004)
give an example where the Nash equilibrium for two com-
peting species is not stable with respect to spatial pertur-
bations, provided interspecific competition is strong
enough.

Both the IFD and the ESS concepts are independent of
any particular migratory and evolutionary dynamics. This
means that the IFD is stable with respect to invasion by
a single monomorphic mutant with a different strategy
irrespective of the particular migration strategy of the mu-
tant. In other words, if a resident population uses some
unspecified migration rule that drives the population to
the IFD, then, provided the resident population already
reached the IFD, no mutant with any different migration
rule can invade the resident population. We see that this
concept of stability is very strong because it is entirely
independent of particular migration rules. However, the
question arises as to what migration rules lead to the IFD.
We resolve this issue in “Migration Dynamics.”

Migration Dynamics

In this section, we develop several models that describe
migration under the assumption that the overall popu-
lation abundance (M) does not change and then study
under which conditions the equilibrium distribution is the
IFD. Thus, the distribution across patches is a function of
immigration and emigration processes only.

To describe changes in population distribution due to
migration, we define the migration matrix I. The entries
of this matrix (Iij) describe the transition probabilities that
an individual currently in patch j moves to patch i in a
unit time interval. The local changes in population num-
bers due to migration are described by

H
dmi p [I (m)m � I (m)m ] (1)� ij j ji idt jp1

for , where is the vectori p 1, … , H m p (m , … , m )1 H

of population densities in H patches. Thus, the first term
in the above summation describes immigration to patch
i from other patches, and the second term describes em-
igration from patch i to other patches. Because the terms
Iii(m)mi describing movement from patch i to itself cancel
in equation (1), Iii(m) can be chosen in such a way that
the sum of the entries in each column of the migration
matrix equals 1. Furthermore, if the unit time interval is
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made short enough, all entries Iij(m) will be nonnegative.
Dividing both sides of the above equation by total pop-
ulation size M and writing the migration matrix as a func-
tion of the population distribution ( )p p (p , … , p )1 H

leads to the following vector migration dynamics:

dp
p I(p)p � p. (2)

dt

To achieve the IFD, either the migration matrix must
be frequency dependent or the fixed migration rates must
correspond to balanced dispersal. Indeed, for any
frequency-independent migration matrix with positive en-
tries, there will be a unique globally asymptotically stable
equilibrium distribution (app. D in the online edition∗p
of the American Naturalist) that exhibits undermatching
in some patches unless the fixed migration rates equal
those for balanced dispersal given by Holt (1985).

We show now that if individuals are ideal and always
sample their environment, the migration matrix in equa-
tion (2) changes abruptly near patch distributions where
two (or more) habitats have the same (highest) payoff.
Suppose there are two patches. The migration rates be-
tween these two patches are I12(p) and I21(p). If individuals
migrate from patches with a lower payoff to patches with
a higher payoff only (which excludes random migration
between patches), then they migrate from patch 2 to patch
1 ( and ) when the payoff in patch 1I (p) 1 0 I (p) p 012 21

is higher than that in patch 2 ( ) and converselyV 1 V1 2

when the payoff in patch 2 is higher than that in patch 1
( and ). Thus, continuous dependenceI (p) p 0 I (p) 1 012 21

of the migration matrix I(p) on the distribution p im-
mediately implies that under the IFD (i.e., when

), there is no migration between theV (p M) p V (p M)1 1 2 2

two patches ( ), as suggested by Hugie andI p I p 012 21

Grand (1998). However, if migration ceases under the IFD,
then individuals cannot keep track of changes in other
patch payoffs (unless the migratory cues are obtained with-
out moving, such as through animals observing feeding
rates, as in Harper 1982). Out of the five empirical studies
of fish and bird habitat distributions that converged to the
IFD reviewed by Hugie and Grand (1998), in only one
instance was no movement between patches observed at
equilibrium distribution, and this was for a case where
distance between patches was large. Thus, if we want an-
imals to migrate between patches even under the IFD, then
either the migration matrix must be a discontinuous func-
tion of population distribution p (which means that small
changes in population distribution lead to disproportion-
ately large changes in the migration rates if two or more
patches have the same payoff) or there must be some non-
IFD (e.g., random) movement between patches (Hugie
and Grand 1998). We discuss both scenarios below. Tra-

ditional models assume that either migration rates are con-
stant (Holt 1985; McPeek and Holt 1992; Holt and Barfield
2001; Padrón and Trevisan 2006) or they change contin-
uously with changing population numbers (e.g., Ives 1992;
Bernstein et al. 1999; DeAngelis et al., forthcoming). Thus,
none of these models can describe the case where animals
are ideal and yet sample their environment under the IFD.

In what follows, we study the conditions under which
the migration dynamics described by equation (2) con-
verge to the IFD. We show that this happens under much
weaker conditions than those originally imposed by
Fretwell and Lucas (1970). In fact, we prove (app. B in
the online edition of the American Naturalist) that con-
vergence to the IFD occurs, provided migration rates sat-
isfy the following two conditions: individuals never mi-
grate to patches with lower payoff and some individuals
always migrate to a patch with the highest payoff (which
prevents the unrealistic case that the patch with the highest
payoff is completely neglected by migrating animals).

It is important to emphasize that these conditions do
not require ideal animals that know their environment
perfectly in the sense that they always move directly to the
best patch, as originally assumed by Fretwell and Lucas
(1970). Instead, an individual needs only to be able to
compare the payoff in one other patch that it samples
(perhaps at random) with its payoff in its current patch,
a much weaker assumption. This is one explanation for
the prevalence that the IFD is observed in the experimental
literature despite the fact that the species in many of these
experiments were clearly nonideal.

Below we illustrate our results using some explicit mi-
gration dynamics. Most of these migration dynamics sat-
isfy the above two assumptions, but we are also interested
in situations where some individuals migrate between
patches at random, in which case our first condition does
not hold.

Ideal Animals

We start with migration dynamics that assume ideal ani-
mals, exactly as Fretwell and Lucas (1970) did. Thus, if
these animals are in a suboptimal patch, they always mi-
grate directly to the patch(es) with the highest payoff. If,
for a given distribution , the payoff Vi inp p (p , … , p )1 H

patch i is larger than that in any other patch, then the
corresponding migration matrix has 1s in the ith row (be-
cause the probability that an animal migrates from any
other patch to patch i equals 1) and 0s everywhere else.

We document this for the case with three patches
( ; fig. 1A), where we set .H p 3 V(p M) p r (1 � p M/K )i i i i i

The inequalities ,V (p M) 1 max {V (p M), V (p M)}1 1 2 2 3 3

, andV (p M) 1 max {V (p M), V (p M)} V (p M) 12 2 1 1 3 3 3 3

split the distribution phase spacemax {V (p M), V (p M)}1 1 2 2



Figure 1: Left, three trajectories for migration dynamics (eq. [2]) when individuals are ideal (A), when individuals are myopic (B), when migration
is proportional to difference in patch payoffs (C; in eq. [4]), and when migration is suboptimal with some random migration (D;m p 0.5 m p

and in eqq. [4] and [7], respectively). The trajectories are shown in a probability simplex phase space (p1, p2, p3) where and0.5 � p 0.2 0 ≤ p ≤ 1i

. The vertices of the triangle correspond to distributions where all individuals occupy one patch only. The IFD (solid dot at thep � p � p p 11 2 3

intersection of dashed lines) is for our parameters. The middle panel shows changes in individual payoffs along the∗ ∗ ∗(p , p , p ) p (0.51, 0.35, 0.14)1 2 3

trajectory that starts at the initial distribution (0, 1, 0). The solid line shows the payoff in the first patch, the dashed line shows the payoff in the
second patch, and the dotted line is the payoff in the third patch. The right panel shows emigration rates from these respective patches along the
same trajectory. Parameters: , , , , , , and .r p 1 r p 0.8 r p 0.6 K p 10 K p 9 K p 8 M p 101 2 3 1 2 3
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(fig. 1A, left, dotted triangle) into three parts. In each of
these three parts, the best patch is uniquely given, and the
migration matrix I(p) is constant and equal to one of the
following three matrices:

1 1 1 
1I p 0 0 0 , 

0 0 0 

0 0 0 
2I p 1 1 1 , 

0 0 0 

0 0 0 
3I p 0 0 0 . 

1 1 1 

We stress here that although the matrices I1, I2, and I3 are
frequency independent, the migration matrix I(p) is fre-
quency dependent because its entries depend on the dis-
tribution. Specifically, migration matrix I(p) is piecewise
constant and changes its value when the distribution crosses
one of the three equal-payoff lines V (p M) p V (p M) 11 1 2 2

, ,V (p M) V (p M) p V (p M) 1 V (p M) V (p M) p3 3 2 2 3 3 1 1 1 1

(fig. 1, left, three lines that meet at theV (p M) 1 V (p M)3 3 2 2

interior point). If population size (M) is large enough so
that all habitats are occupied at the IFD, these three equal-
payoff lines intersect at the IFD (fig. 1A, left, dot):

K {K r (r � r ) � [Mr � K (r � r )]r }1 3 2 1 3 2 2 1 2 3∗p p ,1 M(K r r � K r r � K r r )3 1 2 2 1 3 1 2 3

K {K r (r � r ) � [Mr � K (r � r )]r }2 3 1 2 3 1 1 2 1 3∗p p , (3)2 M(K r r � K r r � K r r )3 1 2 2 1 3 1 2 3

K {K r (r � r ) � [Mr � K (r � r )]r }3 1 2 3 1 2 2 3 2 1∗p p .3 M(K r r � K r r � K r r )3 1 2 2 1 3 1 2 3

Three trajectories of equation (2) are shown in figure 1A
(left) as solid lines. The IFD is reached in finite time, as
is clearly documented in figure 1A (middle), where we see
that patch payoffs equalize in a finite time when the IFD
is achieved.

For example, let us consider an initial distribution where
all individuals occupy patch 2 only, corresponding to the
lower right corner of the triangle in figure 1A (left). For
the particular parameters used in this figure, the “best”
patch is then the first patch, and so individuals initially
migrate there. Thus, payoff in patch 1 decreases, payoff in
patch 2 increases, and payoff in patch 3 does not change
(fig. 1A, middle). Once the population reaches the equal-
payoff line where the payoff in patch 1 equals the payoff
in patch 3, individuals then start to migrate to patch 3 as
well because both patch 1 and patch 3 are the best patches.

The animal distribution must stay on this equal-payoff
line. Indeed, if slightly more individuals moved to patch
1 (so that the corresponding trajectory shifted slightly off
and below the equal-payoff line), the payoff in this patch
would decrease below the payoff in patch 3, and imme-
diately, patch 3 would become the best patch. This forces
the trajectory to move back to the equal-payoff line.

The above specific example can be extended to any
number of patches. The dynamics given by equation (2)
are also called the best response dynamics (Hofbauer and
Sigmund 1998) because they can be used to model indi-
viduals who choose the best strategy with respect to the
present state of the system. Under our assumptions, the
IFD is globally asymptotically stable regardless of the num-
ber of patches. That is, every trajectory of equation (2)
will converge to the IFD when the migration matrix cor-
responds to ideal animals. Furthermore, migration does
not cease at the IFD. In fact, at the IFD (eq. [3]), the
migration rates are equal to the population distribution
(i.e., , , as explained in app. C in the∗I p p i, j p 1, 2, 3ij i

online edition of the American Naturalist). That is, the
probability of migrating from any other patch to patch i,
or staying in patch i and not migrating, is positive (and
equal to ). If the total population density∗p M p K �i 1

corresponds to the population equilibrium (i.e.,K � K2 3

), then the IFD (eq.V (p M) p V (p M) p V (p M) p 01 1 2 2 3 3

[3]) simplifies to and corre-∗p p K /(K � K � K )i i 1 2 3

sponds exactly to balanced dispersal (Holt and Barfield
2001). This agrees with the theoretical prediction given by
McPeek and Holt (1992) that the migration rate from
patch j to patch i (which is ) is inversely related∗I p pij i

to the carrying capacity Kj of patch j. Furthermore, the
emigration rate from patch j (Ej, defined as the sum of
the migration rates from patch j to other patches) at the
IFD (e.g., this rate is ∗ ∗p � p p (K � K )/(K � K �1 2 1 2 1 2

for ) is also inversely related to Kj, in agreementK ) j p 33

with experimental results, such as those of Osawa (2000)
and Diffendorfer (1998). In fact, for our models, a com-
parison of patch payoffs and emigration rates (fig. 1A,
middle and right, respectively) shows that these are also
inversely related along trajectories of equation (2) that
have not yet reached the IFD. Indeed, for every time in-
stant, if the payoff in patch i is higher than that in patch
j (i.e., ), then the emigration rate from patch i isV 1 Vi j

lower than that from patch j. Along this trajectory, the
emigration rates are piecewise constant, and it is clear that
they do not cease when the IFD is reached.

Myopic Animals

The assumption that animals are ideal in the sense that
they immediately move to the best patch is very unrealistic
because it means that animals know their environment
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perfectly. Other more realistic migration rules that are
based on local knowledge can be considered. For example,
we can assume that individuals sample patches at random
and switch to a new habitat only if it has a higher payoff.
If the sampled patch has a lower payoff, then the individual
moves back to the patch it started from. This type of
behavior was observed in the sticklebacks of work by
Milinski (1988), where it continued after the IFD was
reached as some fish checked the resource level in each
patch. It is also a common assumption in simulations of
real ecosystems (e.g., Mooij et al. [2002] used this behavior
to simulate the movement of snail kites in their Florida
wetlands habitat). In our model, the probability that an
individual switches from a patch j with a lower payoff (Vj)
to a patch i with a higher payoff (Vi) is because of1/H
random sampling of the H patches (here we assume that
with probability an individual “samples” its own1/H
patch). The probability that an individual switches in the
opposite direction (i.e., from patch i to patch j) is 0. If all
patches have different payoffs, the probability that an in-
dividual returns to the same patch it started from is ,k/H
where k is the number of patches with a lower payoff. We
will call individuals that follow such migration rules “my-
opic” because their behavior depends only on a local
knowledge of their environment.

We illustrate this migration rule in the case of three
patches. Once again, the migration matrix I(p) is piecewise
constant. Migration rates change when the population dis-
tribution crosses one of the equal-payoff lines (fig. 1B, left,
dashed lines), which leads to six different values of the
migration matrix. For example, in the region of the dis-
tribution space where , the migration matrixV 1 V 1 V1 2 3

is

1 1/3 1/3 
123I(p) p I p 0 2/3 1/3 . 

0 0 1/3 

Indeed, because the payoff in the first patch is highest, all
individuals from patch 1 that sampled any other patch will
return, which gives migration probability On the123I p 1.11

other hand, one-third of individuals from patch 2 and
patch 3 sample patch 1 and stay there. This gives the first
row in the migration matrix I123. Likewise, all individuals
that sampled patch 2 from patch 1 will move back to patch
1, leading to . Furthermore, one-third of individ-123I p 021

uals from patch 2 sample patch 3 and return to patch 2,
which together with one-third of individuals from patch
2 that did not sample any other patch, gives 123I p 2/3.22

Also, one-third of individuals from patch 3 sampled patch
2 and stay there. This gives the second row of the migration
matrix. For the third row, all individuals from patch 1 and
patch 2 that sampled patch 3 return, and only one-third

of individuals from patch 3 (i.e., those that did not sample
any other patch) stay in patch 3. The migration matrices
in any of the other remaining parts of the distribution
phase space can be constructed similarly.

The migration dynamics are shown in figure 1B. As
predicted, they converge to the IFD, which is the same as
the one for ideal animals. In contrast to the ideal case (fig.
1A), trajectories in figure 1B do not evolve immediately
in the direction of the current best patch. This is because
individuals from the worst patch can migrate to either of
the two other patches that have a higher payoff. There is
another important difference when compared with ideal
animals; namely, it is no longer possible to compute mi-
gration rates at the IFD because these rates are not defined
uniquely (fig. 1B, right; app. C). In other words, it is, in
principle, impossible to predict the migration rates at the
IFD when animals are myopic. However, as with ideal
animals, the distribution dynamics continue to be uniquely
defined for myopic animals, and there will still be migra-
tion at the IFD.

Preferences for Patches Are Proportional
to Differences in Payoffs

The two migration dynamics studied above assumed that
individuals migrate even if their distribution is at the IFD.
Migration dynamics can also be developed in which mi-
gration matrices I(p) depend continuously on the popu-
lation distribution p (e.g., Hugie and Grand 2003). In
other words, a small change in the distribution causes
small changes in individual strategies. However, as we dis-
cussed above, under the assumption that individuals never
migrate to patches with a lower payoff, continuity im-
mediately implies there can be no migration among
patches with the same payoff. Although this assumption
is therefore unrealistic in many situations, there are cir-
cumstances where continuous dependence makes sense.
For instance, if individuals can perceive their environment
by some sensory stimuli that do not require them to visit
the other patches, they do not need to migrate when patch
payoffs are the same (i.e., when the distribution corre-
sponds to the IFD).

One of the simplest examples of such a migration matrix
is given by

m(V � V) if V 1 V , i ( ji j i j

I (p) p 0 if V ≤ V , i ( j , (4)ij i j{1 � m(V � V) if i p j� � i
!V Vi �

where is so small that Iii is positive. The above matrixm 1 0
describes migration that increases as the difference be-
tween the payoffs increases. That is, the higher the benefit
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is to moving to a new patch, the more willing individuals
are to do so. As our two general conditions are satisfied
(i.e., individuals do not migrate to patches with a lower
payoff, and some migrate to a patch with the highest pay-
off), the trajectories of these migration dynamics converge
to the IFD. In this example, migration ceases at the IFD
( for ). Furthermore, convergence to the IFDI p 0 i ( jij

can no longer occur in finite time because the resulting
dynamical system has a continuous vector field near the
IFD. The case with three patches is shown in figure 1C.

Another particularly important example of historical in-
terest has the migration matrix given by

mp (V � V) if V 1 V , i ( ji i j i j

I (p) p 0 if V ≤ V , i ( j . (5)ij i j{1 � m p (V � V) if i p j� � � i
!V Vi �

Straightforward calculations then show that equation (2)
becomes the replicator equation

dpi p mp [V(p M) � V(p, M)], i p 1, … , H, (6)i i idt

which is the standard behavioral dynamics used in evo-
lutionary game theory (Hofbauer and Sigmund 1998;
Cressman 2003). In contrast to all the previous migration
matrices, individuals never migrate to unoccupied patches
(if initially, then patch i stays animal free for allp p 0i

time) for the replicator equation. Because this is quite an
unrealistic feature of equation (5) in our context, we feel
that this migration matrix should not be used as a general
model describing migration. However, once again, distri-
butions described by the replicator equation converge to
the IFD if all patches are initially occupied.

Suboptimal Migration

In this section, we assume that there are some individuals
that will move from patches with higher payoffs to patches
with lower payoffs but that the probability of such mal-
adaptive movement will be small when compared with the
probability of moving from a worse patch to a better patch.
This section can then be interpreted as a migration model
that combines both IFD and non-IFD migration (sensu
Hugie and Grand 1998). One interpretation of adding ran-
dom migration is that it allows an individual to make a
mistake in assessing the payoff of a sampled patch. When
the component of migration that leads to the IFD varies
continuously with payoff differences as in the previous
section, we show that undermatching occurs. However,
for ideal or myopic animals, we show that the resulting
population distribution can still correspond to the IFD

even if individuals make errors in their decisions about
where to move.

Assume that the migration matrix has the form

�
I (p) p � (1 � �)J (p), (7)ij ijH

where parameter � ( ) measures the degree of0 ≤ � ≤ 1
random versus frequency-dependent migration in the
population. For example, matrix J can be any of the ma-
trices considered previously that describe frequency-
dependent migration. When , migration matrix (eq.� p 1
[7]) has all its entries the same (i.e., ). This de-I p 1/Hij

scribes unconditional random migration because every in-
dividual has the same probability of moving to any one
of the other patches or staying in the current patch.H � 1
The corresponding random migration dynamics (eq. [2])
then has the globally asymptotically stable uniform equi-
librium distribution .∗p p 1/Hi

Suppose that matrix I depends continuously on distri-
bution p and that Iij increases as either the payoff in patch
i increases or the payoff in patch j decreases. Appendix D
shows that migration dynamics (eq. [2]), where I is given
by equation (7) with , has an asymptotically stable� 1 0
equilibrium . Moreover, all patches are occupied at this∗p
equilibrium distribution, which depends continuously on
the parameter �. If migration under J converges to the
IFD, this ranges from the uniform distribution when∗p

(fig. 1D, ) to the IFD when� p 1 (1/3, 1/3, 1/3) � p 0.
For positive � (such as in fig. 1D), there is undermatching
because fewer individuals are in the better patch than pre-
dicted by the IFD. The extent of undermatching increases
as the component of IFD movement in the population
decreases (i.e., as � approaches 1).

Somewhat counterintuitively, if the migration matrix
can change abruptly with population distribution (e.g.,
animals are ideal or myopic), then the IFD can still be
reached even if individuals make errors in their decisions
(i.e., when ) and migration under J corresponds to� 1 0
ideal (or myopic) individuals. This is clearly documented
in figure 2, where the stable distribution is shown as a
function of the degree of randomness (�) in individual
behavior. This figure assumes that when , individuals� p 0
are ideal and their migration is described by the best re-
sponse dynamics (i.e., the matrix J corresponds to the best
response dynamics). We observe that even with some ran-
dom migration (here � can be any value up to 0.2), the
stable population distribution still corresponds exactly
with the IFD, and, despite the randomness in individual
movement, there is no undermatching. For this phenom-
enon to occur, the migration matrix J corresponding to
IFD movement cannot depend continuously on the pop-
ulation distribution because it is crucial that the IFD move-
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Figure 2: Dependence of the equilibrium distribution on the degree of
randomness � for migration dynamics given by migration matrix (eq.
[7]) when matrix J is given by the best response dynamics. For � less
than approximately 0.2, the distribution corresponds exactly to the IFD

As � tends to 1, the distribution con-∗ ∗ ∗(p , p , p ) p (0.51, 0.35, 0.14)1 2 3

verges to the uniform distribution ( , , ). Parameters as in figure1/3 1/3 1/3
1.

ment under J continue even when the IFD is reached in
order to offset the random (i.e., non-IFD) migration
component.

Suboptimal migration patterns can also emerge when
individual movement depends on other factors besides
resource abundance. For instance, animals may exhibit
exploratory behavior based in part on the memory of patch
payoffs received in the past (our models all assume that
migration rates depend only on current payoffs). The two-
patch simulation study of Regelmann (1984) shows that
combining this effect with some tendency to move to bet-
ter patches again leads to the IFD. Furthermore, in a va-
riety of taxa, it has been shown (e.g., Weisser 2001) that
animals select patches with lower predation risk. Thus,
risky patches can be occupied by disproportionately fewer
consumers than would be the case without predation risk,
while safe patches can be occupied disproportionately
more often. Similarly, animals may prefer to move to al-
ready occupied patches where they can find mates to
patches with no or low occupancy. Qualitatively, migration
then combines two mechanisms: an increase in immigra-
tion rates to patches occupied by conspecifics because of
increased mating probability or decreased predation risk
and an increase in emigration rate from a patch as the
number of individuals increase there. For instance, these
two tendencies are captured by the migration matrix

1
I (p) p p (1 � mV) (8)ij i jH

for , where the factors pi and model thei ( j 1/H(1 � mV)j

first and second mechanisms, respectively. The second fac-
tor can also be interpreted as an individual’s dissatisfaction
with a low payoff in its current patch, together with a
random component whereby these individuals have1/H
not chosen the destination patch. What is interesting for
us is that the IFD again emerges for migration matrix (eq.
[8]), which includes some random migration and also
varies continuously with frequency. The reason for this is
that equation (2) again leads to the replicator equation (6)
of the previous section because the maladaptive movement
of some individuals is more than offset by net migration
to better patches and the aggregate population behavior
results in balanced dispersal at the IFD. That is, the overall
population distribution moves toward the IFD even
though individuals do not behave optimally, a phenom-
enon that has been noted many times in habitat selection
models (e.g., Houston and McNamara 1988; Hugie and
Grand 1998; Stamps 2001).

In summary, while suboptimal migration may lead to
undermatching, as shown by Hugie and Grand (1998), it
can often result in the IFD outcome along with continued
movement between patches at this equilibrium.

Population Dynamics

The theory of IFD separates behavioral and population
timescales by assuming that the IFD occurs so fast that
changes in population numbers can be neglected. How-
ever, individuals also undergo population dynamics, and
these cause a complex feedback between distribution and
population dynamics: distribution changes population
growth, which, in turn, influences distribution (Cressman
and Garay 2003). Here we combine both population dy-
namics and migration dynamics to disentangle this feed-
back. We interpret payoff Vi as individual fitness.

When there is no migration, population dynamics in
each patch are then

dmi p mV(m ), (9)i i idt

where mi is the population density in patch i. In order to
combine these with migration dynamics, we rewrite equa-
tion (9) in terms of the population distribution and total
population size. To this end, the average fitness is given
by , where we re-…V(p, M) p pV (p M) � � p V (p M)1 1 1 H H H

call that is the total population…M(t) p m (t) � � m (t)1 H

size and is the frequency distribution ofp (t) p m (t)/M(t)i i

individuals among habitats. By differentiating the last two
equalities and substituting equation (9), the effect of the
population dynamics on the density M and the distribution
p becomes
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dM
p MV(p, M),

dt

dpi p p [V(p M) � V(p, M)]. (10)i i idt

This is the density-dependent replicator equation (Vincent
and Brown 2005). We stress here that the distribution
dynamics (eq. [10]) are produced solely by changes in
population numbers in each habitat without any migra-
tion. At the equilibrium of the above model,∗ ∗(p , M )

for each . Moreover, all habitats that∗V p V p 0 p 1 0i i

are initially occupied must be occupied at the population
equilibrium. Otherwise, if the population in a patch is
declining to 0, then the payoff in that habitat is eventually
positive, and the population is then increasing (which con-
tradicts the assumption that an initially occupied patch
would go extinct). Therefore, if all habitats are initially
occupied, the individual fitness in each habitat is 0 at the
combined population and distribution equilibrium

. That is, at the population equilibrium, each hab-∗ ∗(p , M )
itat i is at its carrying capacity Ki, and so the IFD is achieved
without any migration between patches. This shows that
the IFD concept, which is based on individual movement
between patches, is also relevant for population dynamics
without migration. Of course, along trajectories of equa-
tion (10), the population distribution does not conform
to the IFD (because fitness differs among patches) before
population numbers are close to the population equi-
librium.

When population dynamics are combined with migra-
tion dynamics, the corresponding population-migration
dynamics are described by the following combination of
equations (2) and (10):

dM
p MV(p, M),

dt

dpi p p [V(p M) � V(p, M)] � l[I(p, M)p � p] . (11)i i i idt

Here l is a positive parameter that characterizes the rel-
ative timescales between the two processes, and

denotes the ith component of vector[I(p, M)p � p]i

. For large l, migratory behavior operates onI(p, M)p � p
a much faster timescale than demographic changes, which
is the case we have already considered. Provided migration
leads to the IFD for each fixed population size (e.g., in-
dividuals are ideal or myopic), the dynamics (eq. [11])
have the same equilibrium as equation (10), which does
not assume any migration between patches. One difference
is that when the migration timescale is short with respect
to the population timescale (i.e., l is very large), the IFD

at each fixed population size will also be achieved along
trajectories of model (11) even before they reach the equi-
librium. For general l, it is intuitively clear (and formally
proved in app. B) that the IFD at population equilibrium
will be globally asymptotically stable in the combined
model because there are now two mechanisms (individual
migration and population dynamics), each of which in-
dependently drives the population distribution to the IFD.

If migratory dynamics do not converge to the IFD (for
fixed population size), then at the equilibrium of equation
(11), population distribution will be shifted off the IFD.
This happens, for example, with random migration and
is caused by the fact that individuals spill over from patches
with a higher payoff to patches with a lower payoff (i.e.,
undermatching; Holt 1985; Houston et al. 1995). In con-
trast with the result depicted in figure 2 for ideal animals,
convergence to the IFD when individuals make errors in
patch assessment cannot occur here when the population-
migration dynamics modeled by equation (11) depend
continuously on the population distribution.

Discussion

In this article, we show the following important and new
results for a single-species IFD. First, the IFD is an ESS
because it is stable with respect to spatial perturbations.
Second, we give explicit models of migration dynamics
(based on individual decisions) that converge to the IFD.
These models do not require that individuals are globally
omniscient (i.e., ideal), as assumed by Fretwell and Lucas
(1970). Third, we show that under these migratory dy-
namics, individuals still migrate when the IFD is reached
at rates corresponding to balanced dispersal (McPeek and
Holt 1992). Fourth, we show that the IFD can be reached
even if individuals move suboptimally either through er-
rors in patch assessment or for reasons other than resource
abundance. Fifth, we show that migration rates at the IFD
are nonunique when animals are myopic. Sixth, we show
that the IFD occurs at the population equilibrium solely
due to population dynamics when there is no migration
between patches.

The original definition of the IFD by Fretwell and Lucas
(1970) defines the IFD as a Nash equilibrium of a game
against nature (i.e., a game between an individual and an
average individual in the population; Maynard Smith
1982). A Nash equilibrium is not necessarily an ESS be-
cause it may be unstable with respect to mutants that have
the same payoff but use a different strategy (in our model,
these mutants spend a different proportion of their time
in each habitat than the residents using the IFD strategy).
In particular, this instability occurs for some Nash equi-
libria of two-species habitat models (Cressman et al. 2004),
and it is not clear that this cannot happen in a single-



394 The American Naturalist

species, multipatch environment too. Thus, it is not
enough to show that under the IFD, individuals in all
occupied patches achieve the same fitness, as is typically
done in the literature on the IFD. In this article, we proved
that every Nash equilibrium of the habitat selection game
for a single species is automatically an ESS when payoff
in every patch decreases with higher occupancy. That is,
the original definition of the IFD given by Fretwell and
Lucas (1970) is indeed an ESS. This confusion about
whether the IFD is an ESS is partially due to the fact that
the IFD was defined before the ESS.

The IFD is a static concept that does not consider the
mechanism that drives the system to the IFD. Models that
assume fixed migration rates have been considered in stud-
ies on evolution of dispersal rates (Hastings 1983; Holt
1985; McPeek and Holt 1992; Holt and Barfield 2001).
McPeek and Holt (1992; see also Padrón and Trevisan
2006) derived the analytical condition of balanced dis-
persal that leads to the IFD. In their model, these fixed
balanced dispersal rates yield an evolutionarily stable dis-
persal strategy whereby individuals continue to migrate
when the distribution is at the IFD. In this article, we show
how frequency-dependent migration rates based on in-
dividual decisions also lead to balanced dispersal rates at
the IFD. However, such frequency dependence of migra-
tion rates inevitably requires discontinuous migration rates
(that change abruptly as the population distribution
changes) and a new modeling methodology based on dis-
continuous differential equations (e.g., Colombo and
Křivan 1993; Křivan 1997; van Baalen et al. 2001; Meza
et al. 2005). We prove that for fixed population size, the
frequency-dependent migration dynamics will converge to
the IFD for any migration pattern (with either continuous
or discontinuous rates) whereby no individual migrates to
a patch with a lower payoff. This considerably relaxes the
assumptions behind the IFD because individuals need not
know the payoff in all patches. For example, it is enough
that individuals are able to compare the payoff in a new
patch with the payoff in the patch they just left and, if the
latter is higher, move back to the original patch.

It is interesting to note that migration rates that vary
continuously with payoff differences have been investi-
gated vis-à-vis IFD theory in other contexts. For instance,
Cosner (2004) analyzed a spatially continuous habitat (our
model assumes that patches are spatially distinct) through
a gradient system based on net migration in the direction
of the locally highest payoff. More relevant for this article
is the two-patch model (with unequal competitors in each
patch) of Hugie and Grand (1998, 2003), who also in-
cluded a random migration component. They surveyed 14
empirical studies on the IFD and found that at the dis-
tribution equilibrium, migration between patches was ob-
served in eight cases, was not observed in one case where

distance between patches was large, and was not measured
in other cases (although it was thought to occur at least
in some of these remaining cases). They argued that be-
cause an individual in a finite population decreases its
fitness by moving to another patch at the IFD, the fact
that migration does not cease needs further explanation.
They suggested that the observed migration at the IFD is
due to some “non-IFD movement” such as random mi-
gration. Our models with discontinuous migration rates
provide an alternative explanation because individuals
now continue to migrate even if their distribution cor-
responds to the IFD.

We also considered the situation where individuals move
for non-IFD reasons (Hugie and Grand 1998), incorpo-
rating the possibility that individuals make errors in their
decisions where to move. It has been observed many times
that a combination of migration for both IFD and non-
IFD reasons leads to undermatching as described by Holt
(1985), Houston et al. (1995), and others. In particular,
as random migration increases, the difference between the
distribution equilibrium and the IFD increases too. How-
ever, for our frequency-dependent migration models, this
need not be so. Indeed, if migration rules are based on
ideal animals who also make occasional mistakes, the re-
sulting distribution can still correspond exactly to the IFD
as if there were no errors in individual decisions. This is
clearly demonstrated in figure 2.

As mentioned at the beginning of this article, there is
more empirical evidence (e.g., Hodek and Honěk 1996)
to conclude that individual emigration rates are higher for
low-quality patches than there is to claim that immigration
rates increase as patch quality improves. It is therefore
important to consider the emigration rates for our mi-
gration dynamics models (see the four cases of fig. 1). By
comparing patch payoffs with emigration rates at each
instant in time, we see that the emigration rate from a
patch with a higher payoff is always lower than that from
a lower-payoff patch, for all our migration dynamics. This
result is true in our models whether the dynamics converge
to the IFD (i.e., cases A and B, which have continued
migration at the IFD, and case C, where migration ceases)
or not (i.e., case D, which includes a suboptimal random
migration component and continuously varying migration
rates). On the other hand, when trajectories in our models
maintain equal payoffs between two (or more) patches
(i.e., cases A and B), we see that emigration rates are lower
from the high-density patch, in agreement with predictions
based on the balanced dispersal method and correspond-
ing experimental results (e.g., Diffendorfer 1998). More-
over, our analyses suggest that it can be difficult to obtain
consistent predictions from measuring migration rates. For
instance, there may be no one-to-one relationship between
animal distribution and migration rates, as our example
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with myopic animals shows (fig. 1B). Although we do not
expect that this is the case in most systems, the actual
animal distribution may be a more relevant measurement
than the migration rates.

The previous paragraphs imply that it is quite difficult
to use IFD theory to quantify empirically the relative prev-
alence of random versus nonrandom migration and of
ideal versus suboptimal behavior when the IFD is attained
(or nearly attained) at fixed overall population abundance.
This problem escalates when the effects of population dy-
namics are also included. The theoretical approach based
on balanced dispersal assumes that the population migra-
tion rates will then evolve over evolutionary time to those
needed to attain the IFD. However, the evidence to support
this assumption is inconclusive at best. For example,
Donahue et al. (2003), who measured dispersal rates for
the single-cell ciliate, Colpidium striatum, over several gen-
erations, found that long-term dispersal rates did not pos-
itively correlate with patch quality (i.e., balanced dispersal
did not evolve). The IFD theory has been observed for
many higher-level organisms (e.g., Harper 1982; Milinski
1988; Hugie and Grand 1998; Berec et al. 2006) where
migration patterns are based on individual decisions dur-
ing a single generation. In this setup, we showed the fol-
lowing general principles for the combined effects of mi-
gration and population dynamics.

If individuals do not migrate between patches, the pop-
ulation distribution at the population equilibrium still cor-
responds to the IFD because the fitness of each individual
is then equal to 0. Thus, the IFD condition holds auto-
matically at the population equilibrium even when there
is no migration, a simple consequence of the fact that
better patches can support higher population numbers.
Combining population dynamics with IFD migration dy-
namics that act on a faster timescale leads to the IFD even
if population dynamics are not at an equilibrium. On the
other hand, some randomness in migration (i.e., non-IFD
migration) can lead to a departure from the IFD at the
population equilibrium and to undermatching, especially
if the migration rules are such that the IFD movement
ceases under the IFD. However, if migration rules assume
that individuals continue to sample their environment at
the IFD, then some random migration may be present
without resulting in a departure from the IFD.

If individual migration is always toward better patches,
we proved that at the population equilibrium, the pop-
ulation distribution will correspond to the IFD and the
equilibrium is globally stable. Although this result seems
obvious because both population dynamics and individual
migration independently drive the population distribution
to the IFD, one must be careful drawing this conclusion,
as counterexamples with a two-species ESS given by Cress-
man et al. (2004) show. In the case of two species, it can

happen that when both processes are combined, the re-
sulting population equilibrium (and its corresponding
equilibrium distribution) may be destabilized by migra-
tion. Specifically, Cressman et al. (2004) give a theoretical
example of a two-species, two-habitat competition model
where fast individual migration, which drives the two-
species system to the two-species IFD, destabilizes the sta-
ble population equilibrium. However, it seems that in
many situations, such a phenomenon does not arise, and
the combined population dynamics and individual mi-
gration will converge to the IFD (e.g., Holt and Barfield
2001; DeAngelis et al., forthcoming).

From our theoretical analysis, it seems that several fac-
tors must be considered in order to understand the mech-
anisms that govern animal distribution. First, it is impor-
tant to know whether the observed (approximate) IFD
distributions are primarily due to animal migration or to
population dynamics. This requires a knowledge of the
biological system’s spatial scales and timescales, which are
ultimately based on distances between patches and on mi-
gration versus demographic rates of change, respectively.
When total population size changes slowly and patches
are close to each other (these conditions correspond to
most typical experimental settings within which the IFD
has been observed), it will be predominantly animal mi-
gration that drives the population distribution to the IFD.
On the other hand, if patches are far apart and migration
is a slow process, it is more likely that population dynamics
will be the predominant mechanism if the IFD is observed.
Second, it is also important to disentangle the effect of
migration for IFD reasons from migration for non-IFD
reasons. Because migration rates are difficult to measure
(but see Donahue et al. 2003), this is a challenging task
for ecologists. However, such a separation is necessary in
order to weigh the contributions of random migration,
balanced dispersal, and frequency-dependent migration.
For instance, we have shown in this article that frequency-
dependent migration of individuals can continue once the
IFD is reached and, conversely, that a combination of ideal
animals with random migration does not always lead to
undermatching. Moreover, even if animals move only for
IFD reasons, migration rates can be difficult to predict
(e.g., migration rates for myopic animals are not always
uniquely defined; see fig. 1B). These issues need to be
analyzed further to develop individual-based models of
habitat choice for particular biological systems.
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Colombo, R., and V. Křivan. 1993. Selective strategies in food webs.
IMA Journal of Mathematics Applied in Medicine and Biology 10:
281–291.

Cosner, C. 2004. A dynamic model for the ideal-free distribution as
a partial differential equation. Theoretical Population Biology 67:
101–108.

Cressman, R. 2003. Evolutionary dynamics and extensive form
games. MIT Press, Cambridge, MA.

Cressman, R., and J. Garay. 2003. Evolutionary stability in Lotka-
Volterra systems. Journal of Theoretical Biology 222:233–245.

Cressman, R., and J. Hofbauer. 2005. Measure dynamics on a one-
dimensional continuous trait space: theoretical foundations for
adaptive dynamics. Theoretical Population Biology 67:47–59.
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