527 research outputs found

    Jet simulations extending radially self-similar MHD models

    Full text link
    We perform a numerical simulation of magnetohydrodynamic radially self-similar jets, whose prototype is the Blandford & Payne analytical example. The reached final steady state is valid close to the rotation axis and also at large distances above the disk where the classical analytical model fails to provide physically acceptable solutions. The outflow starts with a sub-slow magnetosonic speed which subsequently crosses all relevant MHD critical points and corresponding magnetosonic separatrix surfaces. The characteristics are plotted together with the Mach cones and the super-fast magnetosonic outflow satisfies MHD causality. The final solution remains close enough to the analytical one which is thus shown to be topologically stable and robust for various boundary conditions.Comment: 11 pages, 8 figures, minor changes to match the version accepted by MNRA

    Synthetic synchrotron emission maps from MHD models for the jet of M87

    Full text link
    We present self-consistent global, steady-state MHD models and synthetic optically thin synchrotron emission maps for the jet of M87. The model consist of two distinct zones: an inner relativistic outflow, which we identify with the observed jet, and an outer cold disk-wind. While the former does not self-collimate efficiently due to its high effective inertia, the latter fulfills all the conditions for efficient collimation by the magneto-centrifugal mechanism. Given the right balance between the effective inertia of the inner flow and the collimation efficiency of the outer disk wind, the relativistic flow is magnetically confined into a well collimated beam and matches the measurements of the opening angle of M87 over several orders of magnitude in spatial extent. The synthetic synchrotron maps reproduce the morphological structure of the jet of M87, i.e. center-bright profiles near the core and limb-bright profiles away from the core. At the same time, they also show a local increase of brightness at some distance along the axis associated to a recollimation shock in the MHD model. Its location coincides with the position of the optical knot HST-1. In addition our best fitting model is consistent with a number of observational constraints such as the magnetic field in the knot HST-1, and the jet-to-counterjet brightness ratio.Comment: 9 pages, 9 figures, accepted by Ap

    Counter-rotation in relativistic magnetohydrodynamic jets

    Full text link
    Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. (2012) have shown that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Signatures of motions transverse to the jet axis and in opposite directions have recently been measured in M87 (Meyer et al. 2013). One possible interpretation of this motion is the one of counter rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases : if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or, if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of relativistic MHD jet simulation.Comment: Accepted for publication in ApJ

    Stability and structure of analytical MHD jet formation models with a finite outer disk radius

    Full text link
    (Abridged) Finite radius accretion disks are a strong candidate for launching astrophysical jets from their inner parts and disk-winds are considered as the basic component of such magnetically collimated outflows. The only available analytical MHD solutions for describing disk-driven jets are those characterized by the symmetry of radial self-similarity. Radially self-similar MHD models, in general, have two geometrical shortcomings, a singularity at the jet axis and the non-existence of an intrinsic radial scale, i.e. the jets formally extend to radial infinity. Hence, numerical simulations are necessary to extend the analytical solutions towards the axis and impose a physical boundary at finite radial distance. We focus here on studying the effects of imposing an outer radius of the underlying accreting disk (and thus also of the outflow) on the topology, structure and variability of a radially self-similar analytical MHD solution. The initial condition consists of a hybrid of an unchanged and a scaled-down analytical solution, one for the jet and the other for its environment. In all studied cases, we find at the end steady two-component solutions.Comment: 14 pages, 15 figures, accepted for publication in A &

    Magnetic collimation of the relativistic jet in M87

    Full text link
    We apply a two-zone MHD model to the jet of M87. The model consists of an inner relativistic outflow, which is surrounded by a non-relativistic outer disk-wind. The outer disk-wind collimates very well through magnetic self-collimation and confines the inner relativistic jet into a narrow region around the rotation axis. Further, we show by example, that such models reproduce very accurately the observed opening angle of the M87 jet over a large range from the kiloparsec scale down to the sub-parsec scale.Comment: 4 pages, 2 figures, accepted by A&A Letter

    Systematic Construction of Exact 2-D MHD Equilibria with Steady, Compressible Flow in Cartesian Geometry and Uniform Gravity

    Get PDF
    We present a systematic method for constructing two-dimensional magnetohydrodynamic equilibria with compressible flow in Cartesian geometry. This systematic method has already been developed in spherical geometry and applied in modelling solar and stellar winds and outflows (Vlahakis & Tsinganos,1998) but is derived here in Cartesian geometry in the context of the solar atmosphere for the first time. Using the method we find several new classes of solutions, some of which generalise known solutions, including the Kippenhahn & Schl\"uter (1957) and Hood & Anzer (1990) solar prominence models and the Tsinganos, Surlantzis & Priest (1993) coronal loop model with flow, and some of which are completely new. Having developed the method in full and summarised the several classes of solutions, we explore in a some detail one of the classes to illustrate the general construction method. From one of the new classes of solutions we calculate two loop-like solutions, one of which is the first exact two-dimensional magnetohydrodynamic equilibrium with trans-Alfv\'enic flow.Comment: 12 pages, 12 Postscript figures, accepted by A&A 16th November 2001, uses aa.cl

    Resistive jet simulations extending radially self-similar magnetohydrodynamic models

    Full text link
    Numerical simulations with self-similar initial and boundary conditions provide a link between theoretical and numerical investigations of jet dynamics. We perform axisymmetric resistive magnetohydrodynamic (MHD) simulations for a generalised solution of the Blandford & Payne type, and compare them with the corresponding analytical and numerical ideal-MHD solutions. We disentangle the effects of the numerical and physical diffusivity. The latter could occur in outflows above an accretion disk, being transferred from the underlying disk into the disk corona by MHD turbulence (anomalous turbulent diffusivity), or as a result of ambipolar diffusion in partially ionized flows. We conclude that while the classical magnetic Reynolds number RmR_{\rm m} measures the importance of resistive effects in the induction equation, a new introduced number, \rbeta=(\beta/2)R_{\rm m} with ÎČ\beta the plasma beta, measures the importance of the resistive effects in the energy equation. Thus, in magnetised jets with ÎČ<2\beta<2, when \rbeta \la 1 resistive effects are non-negligible and affect mostly the energy equation. The presented simulations indeed show that for a range of magnetic diffusivities corresponding to \rbeta \ga 1 the flow remains close to the ideal-MHD self-similar solution.Comment: Accepted for publication in MNRA

    Resistive MHD jet simulations with large resistivity

    Full text link
    Axisymmetric resistive MHD simulations for radially self-similar initial conditions are performed, using the NIRVANA code. The magnetic diffusivity could occur in outflows above an accretion disk, being transferred from the underlying disk into the disk corona by MHD turbulence (anomalous turbulent diffusivity), or as a result of ambipolar diffusion in partially ionized flows. We introduce, in addition to the classical magnetic Reynolds number Rm, which measures the importance of resistive effects in the induction equation, a new number Rb, which measures the importance of the resistive effects in the energy equation. We find two distinct regimes of solutions in our simulations. One is the low-resistivity regime, in which results do not differ much from ideal-MHD solutions. In the high-resistivity regime, results seem to show some periodicity in time-evolution, and depart significantly from the ideal-MHD case. Whether this departure is caused by numerical or physical reasons is of considerable interest for numerical simulations and theory of astrophysical outflows and is currently investigated.Comment: To appear in the proceedings of the "Protostellar Jets in Context" conference held on the island of Rhodes, Greece (7-12 July 2008

    Overdensity of SMGs in fields containing z ∌ 0.3 galaxies: magnification bias and the implications for studies of galaxy evolution

    Get PDF
    We report a remarkable overdensity of high-redshift submillimetre galaxies (SMG), 4–7 times the background, around a statistically complete sample of twelve 250 Όm selected galaxies at z = 0.35, which were targeted by ALMA in a study of gas tracers. This overdensity is consistent with the effect of lensing by the haloes hosting the target z = 0.35 galaxies. The angular cross-correlation in this sample is consistent with statistical measures of this effect made using larger sub-mm samples. The magnitude of the overdensity as a function of radial separation is consistent with intermediate scale lensing by haloes of the order of 7×1013 M⊙ ⁠, which should host one or possibly two bright galaxies and several smaller satellites. This is supported by observational evidence of interaction with satellites in four out of the six fields with SMG, and membership of a spectroscopically defined group for a fifth. We also investigate the impact of these SMG on the reported Herschel fluxes of the z = 0.35 galaxies, as they produce significant contamination in the 350 and 500 Όm Herschel bands. The higher than random incidence of these boosting events implies a significantly larger bias in the sub-mm colours of Herschel sources associated with z < 0.7 galaxies than has previously been assumed, with fboost = 1.13, 1.26, 1.44 at 250, 350, and 500 Όm . This could have implications for studies of spectral energy distributions, source counts, and luminosity functions based on Herschel samples at z = 0.2–0.7
    • 

    corecore