92 research outputs found

    Common dace (Leuciscus leuciscus) - A new host of the myxozoan fish parasite, Myxobolus elegans (Cnidaria: Myxozoa) - Short communication

    Get PDF
    This paper reports the detection of the myxozoan species Myxobolus elegans Kashkovsky 1966 in common dace (Leuciscus leuciscus) that has not been previously listed as its host. The problem of differentiation of phenotypically similar Myxobolus species is addressed. During parasitological survey of common dace from the desalinated part of the Gulf of Finland at the city of Sestroretsk, Russia, numerous oval-shaped plasmodia, 0.2-0.4 mm in size, filled with Myxobolus spores were found on the gills. Pear-shaped myxospores were 15.4 (14.8-16.0) x 10.2 (9.6-10.9) mu m in size with a rib on each valve. On the basis of spore morphology, the species appeared to be similar to M. elegans and Myxobolus hungaricus Jaczo, 1940. In order to identify the species, molecular genetic analysis was performed, and the species was identified on the basis of morphological characteristics and 18S rDNA data. The results obtained indicate that the Myxobolus species observed on the gills of dace is M. elegans. Thus, common dace is another valid host of M. elegans besides the type host, ide (Leuciscus idus)

    Spectroscopic study of proflavine adsorption on the carbon nanotube surface

    Get PDF
    The present paper sheds light on one of the possible mechanisms of interaction between the typical aromatic dye proflavine and the carbon nanotube surface, namely, π-stacking between aromatic rings of these compounds. To investigate such a complexation, a qualitative analysis was performed by means of ultraviolet visible, infrared, and nuclear magnetic resonance spectroscopy. The data obtained suggest that π-stacking brings the major contribution to the stabilization of the complex between proflavine and the carbon nanotub

    Reducing the Costs for Consumed Electricity through the Solar Energy Utilization

    Get PDF
    The priority development direction of the Rostov region as the largest agricultural producer of Russia is the creation of modern, competitive processing industries. Since the beginning of 2015, despite record harvests of cereals, the wheat flour cost has been steadily increasing and now exceeds the peak values for the previous period from 2008 to 2015. This caused by the high share of payment for consumed electricity in the production costs, which is approximately 30%, and significant increase in tariffs for it in the last 10-12 years due to unjustifiably high costs of equipment maintenance and operation in grid companies, liquidation of cross-subsidizing prices, as well as rising gas prices. Under conditions of the existing high solar energy potential in the territory of the South of the country, the implementation of technologies for its transformation into electricity will reduce energy costs and, consequently, reduce the costs of produced goods and services. The purpose of the presented research was to determine the composition and parameters of the equipment of a solar electrical power plant that provides energy to the lighting system of the flour milling section No. 1 and No. 2 of the processing plant Ltd. "Rostovremagroprom" in Zernograd of the Rostov Region, taking into account the assessment of the solar radiation intensity during the year, the structural features of the building roof and features of the company's load graph. Full solar energy potential (1246.87 kWh / m²) is possible to realize at the facility partly due to the existing technical limitations imposed by the building roof construction. The design and implementation of economically feasible additional power supply system for the lighting system of the flour-milling departments of the enterprise excludes the usage of accumulating devices, allowing to reduce the annual costs for the payment of consumed electricity by approximately 45 thousand rubles by decreasing the cost of each one kilowatt-hour of consumed electricity from 8.1 rubles / kWh to 3.6 rubles / kWh during the period of intense activity of the Sun. Keywords: Solar Energy Potential, Inclination Angle of the Receiving Surface, the Layout of the Solar Power Plant JEL Classifications: O13, O44 DOI: https://doi.org/10.32479/ijeep.720

    Polyurethane/<i>n</i>-Octadecane Phase-Change Microcapsules via Emulsion Interfacial Polymerization: The Effect of Paraffin Loading on Capsule Shell Formation and Latent Heat Storage Properties.

    Get PDF
    Organic phase-change materials (PCMs) hold promise in developing advanced thermoregulation and responsive energy systems owing to their high latent heat capacity and thermal reliability. However, organic PCMs are prone to leakages in the liquid state and, thus, are hardly applicable in their pristine form. Herein, we encapsulated organic PCM n-Octadecane into polyurethane capsules via polymerization of commercially available polymethylene polyphenylene isocyanate and polyethylene glycol at the interface oil-in-water emulsion and studied how various n-Octadecane feeding affected the shell formation, capsule structure, and latent heat storage properties. The successful shell polymerization and encapsulation of n-Octadecane dissolved in the oil core was verified by confocal microscopy and Fourier-transform infrared spectroscopy. The mean capsule size varied from 9.4 to 16.7 µm while the shell was found to reduce in thickness from 460 to 220 nm as the n-Octadecane feeding increased. Conversely, the latent heat storage capacity increased from 50 to 132 J/g corresponding to the growth in actual n-Octadecane content from 25% to 67% as revealed by differential scanning calorimetry. The actual n-Octadecane content increased non-linearly along with the n-Octadecane feeding and reached a plateau at 66-67% corresponded to 3.44-3.69 core-to-monomer ratio. Finally, the capsules with the reasonable combination of structural and thermal properties were evaluated as a thermoregulating additive to a commercially available paint

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    The neutron and its role in cosmology and particle physics

    Full text link
    Experiments with cold and ultracold neutrons have reached a level of precision such that problems far beyond the scale of the present Standard Model of particle physics become accessible to experimental investigation. Due to the close links between particle physics and cosmology, these studies also permit a deep look into the very first instances of our universe. First addressed in this article, both in theory and experiment, is the problem of baryogenesis ... The question how baryogenesis could have happened is open to experimental tests, and it turns out that this problem can be curbed by the very stringent limits on an electric dipole moment of the neutron, a quantity that also has deep implications for particle physics. Then we discuss the recent spectacular observation of neutron quantization in the earth's gravitational field and of resonance transitions between such gravitational energy states. These measurements, together with new evaluations of neutron scattering data, set new constraints on deviations from Newton's gravitational law at the picometer scale. Such deviations are predicted in modern theories with extra-dimensions that propose unification of the Planck scale with the scale of the Standard Model ... Another main topic is the weak-interaction parameters in various fields of physics and astrophysics that must all be derived from measured neutron decay data. Up to now, about 10 different neutron decay observables have been measured, much more than needed in the electroweak Standard Model. This allows various precise tests for new physics beyond the Standard Model, competing with or surpassing similar tests at high-energy. The review ends with a discussion of neutron and nuclear data required in the synthesis of the elements during the "first three minutes" and later on in stellar nucleosynthesis.Comment: 91 pages, 30 figures, accepted by Reviews of Modern Physic

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
    corecore