26 research outputs found

    IMGT/GeneInfo: T cell receptor gamma TRG and delta TRD genes in database give access to all TR potential V(D)J recombinations

    Get PDF
    BACKGROUND: Adaptative immune repertoire diversity in vertebrate species is generated by recombination of variable (V), diversity (D) and joining (J) genes in the immunoglobulin (IG) loci of B lymphocytes and in the T cell receptor (TR) loci of T lymphocytes. These V-J and V-D-J gene rearrangements at the DNA level involve recombination signal sequences (RSS). Whereas many data exist, they are scattered in non specialized resources with different nomenclatures (eg. flat files) and are difficult to extract. DESCRIPTION: IMGT/GeneInfo is an online information system that provides, through a user-friendly interface, exhaustive information resulting from the complex mechanisms of T cell receptor V-J and V-D-J recombinations. T cells comprise two populations which express the αβ and γδ TR, respectively. The first version of the system dealt with the Homo sapiens and Mus musculus TRA and TRB loci whose gene rearrangements allow the synthesis of the αβ TR chains. In this paper, we present the second version of IMGT/GeneInfo where we complete the database for the Homo sapiens and Mus musculus TRG and TRD loci along with the introduction of a quality control procedure for existing and new data. We also include new functionalities to the four loci analysis, giving, to date, a very informative tool which allows to work on V(D)J genes of all TR loci in both human and mouse species. IMGT/GeneInfo provides more than 59,000 rearrangement combinations with a full gene description which is freely available at . CONCLUSION: IMGT/GeneInfo allows all TR information sequences to be in the same spot, and are now available within two computer-mouse clicks. This is useful for biologists and bioinformaticians for the study of T lymphocyte V(D)J gene rearrangements and their applications in immune response analysis

    Numerical Modelling Of The V-J Combinations Of The T Cell Receptor TRA/TRD Locus

    Get PDF
    T-Cell antigen Receptor (TR) repertoire is generated through rearrangements of V and J genes encoding α and β chains. The quantification and frequency for every V-J combination during ontogeny and development of the immune system remain to be precisely established. We have addressed this issue by building a model able to account for Vα-Jα gene rearrangements during thymus development of mice. So we developed a numerical model on the whole TRA/TRD locus, based on experimental data, to estimate how Vα and Jα genes become accessible to rearrangements. The progressive opening of the locus to V-J gene recombinations is modeled through windows of accessibility of different sizes and with different speeds of progression. Furthermore, the possibility of successive secondary V-J rearrangements was included in the modelling. The model points out some unbalanced V-J associations resulting from a preferential access to gene rearrangements and from a non-uniform partition of the accessibility of the J genes, depending on their location in the locus. The model shows that 3 to 4 successive rearrangements are sufficient to explain the use of all the V and J genes of the locus. Finally, the model provides information on both the kinetics of rearrangements and frequencies of each V-J associations. The model accounts for the essential features of the observed rearrangements on the TRA/TRD locus and may provide a reference for the repertoire of the V-J combinatorial diversity

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Analysis of the TCR alpha-chain rearrangement profile in human T lymphocytes.

    No full text
    doi : 10.1016/j.molimm.2007.02.017International audienceThe size of the available human alphabeta T cell repertoire is difficult to determine and is open to debate. Empirical analysis of TCR beta-chain diversity reveals approximately 10(6) different beta chains in peripheral blood. Due in part to locus complexity, comparable information for TCR alpha is lacking. Rather, current estimates for human TCR alpha diversity, and hence, total repertoire diversity, are based on theoretical analyses that assume equal probabilities of rearrangement between any V alpha gene and J alpha gene. Here, we report on a systematic locus-wide rearrangement analysis of the TCR alpha-chain in human T cells. We first demonstrate that the V-J alpha recombination in the thymus is not random but depends on the reciprocal V alpha and J alpha position within the locus. Characterization of the frequency of gene usage combined with identification of five previously unrecognized pseudogenes enables us to empirically estimate the human TCR alpha combinatorial repertoire. The number of V-J alpha combinations achieved is approximately 44-56% of the total combinatorial possibilities, significantly lower than theoretical estimates. We also demonstrate that TCR alpha-chain diversity in peripheral T lymphocytes mimics the same general patterns of rearrangement as observed in the thymus, and these patterns appear conserved among different individuals. This unexpected observation indicates that, unlike the TCR beta locus, the human TCR alpha-chain repertoire is primarily predetermined by genetic recombination and its size is restricted by limits on the combinatorial repertoire rather than post-thymic selection

    IMGT/GeneInfo: enhancing V(D)J recombination database accessibility

    No full text
    IMGT/GeneInfo is a user-friendly online information system that provides information on data resulting from the complex mechanisms of immunoglobulin (IG) and T cell receptor (TR) V(D)J recombinations. For the first time, it is possible to visualize all the rearrangement parameters on a single page. IMGT/GeneInfo is part of the international ImMunoGeneTics information system® (IMGT), a high-quality integrated knowledge resource specializing in IG, TR, major histocompatibility complex (MHC), and related proteins of the immune system of human and other vertebrate species. The IMGT/GeneInfo system was developed by the TIMC and ICH laboratories (with the collaboration of LIGM), and is the first example of an external system being incorporated into IMGT. In this paper, we report the first part of this work. IMGT/GeneInfo_TR deals with the human and mouse TRA/TRD and TRB loci of the TR. Data handling and visualization are complementary to the current data and tools in IMGT, and will subsequently allow the modelling of V(D)J gene use, and thus, to predict non-standard recombination profiles which may eventually be found in conditions such as leukaemias or lymphomas. Access to IMGT/GeneInfo is free and can be found at http://imgt.cines.fr/GeneInfo

    Numerical Modelling Of The V-J Combinations Of The T Cell Receptor TRA/TRD Locus

    No full text
    International audienceLymphocytes of the immune system ensure the body defense by the expression of receptors which are specific of targets, termed antigens. Each lymphocyte, deriving from the same original clone, expresses the same unique receptor. To achieve the production of receptors covering the wide variety of antigens, lymphocytes use a specialized genetic mechanism consisting of gene rearrangements. For instance, the genes encoding the receptor of the alpha chain of the T lymphocyte receptor (TRA) spread over a 1500 Kb genetic region which includes around 100 V genes, 60 J genes, and a single C gene. To constitute a functional alpha chain, one of the V and one of the J genes rearrange together to form a single exon. The precise definition of these V-J combinations is essential to understand the repertoire of TRA. We have developed a numerical model simulating all of the V-J combinations of TRA, fitting the available experimental observations obtained from the analysis of TRA in T lymphocytes of the thymus and the blood. Our model gives new insights on the rules controlling the use of V and J genes in providing a dynamic estimation of the total V-J combinations

    Density and RSS scores of the J genes.

    No full text
    <p>Values for the density (open squares) and RSS scores (dark circles) were calculated, as described in methods, for each J gene from the four previous and next genes. X axis represents the J genes, the Y axis the density or the RSS score for all J genes.</p

    J region use by V14: comparison between experimental and simulation data.

    No full text
    *<p>Frequencies of rearrangements of V14 genes were calculated from <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000682#pcbi-1000682-g002" target="_blank">Figure 2</a> in Aude-Garcia <i>et al.</i><a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000682#pcbi.1000682-AudeGarcia1" target="_blank">[10]</a>, for the combinations with three J panels, corresponding to series of J genes scattered along the J region.</p>#<p>Frequencies of rearrangements of V14 genes and of all V genes were calculated from modelling data for the combinations with same series of J genes.</p

    V-J association probabilities along the TRA locus.

    No full text
    <p>9 V-J association probabilities given by the model. These results show an unbalanced use of the proximal and distal V and J genes. For instance, if all V-J combinations are equiprobable, the probability of each V-J association should be about 2.10<sup>−4</sup>.</p
    corecore