77 research outputs found

    Expression dynamics of a cellular metabolic network

    Get PDF
    Toward the goal of understanding system properties of biological networks, we investigate the global and local regulation of gene expression in the Saccharomyces cerevisiae metabolic network. Our results demonstrate predominance of local gene regulation in metabolism. Metabolic genes display significant coexpression on distances smaller than the average network distance, a behavior supported by the distribution of transcription factor binding sites in the metabolic network and genome context associations. Positive gene coexpression decreases monotonically with distance in the network, while negative coexpression is strongest at intermediate network distances. We show that basic topological motifs of the metabolic network exhibit statistically significant differences in coexpression behavior

    Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers

    Get PDF
    Tumor genetics guides patient selection for many new therapies, and cell culture studies have demonstrated that specific mutations can promote metabolic phenotypes. However, whether tissue context defines cancer dependence on specific metabolic pathways is unknown. Kras activation and Trp53 deletion in the pancreas or the lung result in pancreatic ductal adenocarinoma (PDAC) or non-small cell lung carcinoma (NSCLC), respectively, but despite the same initiating events, these tumors use branched-chain amino acids (BCAAs) differently. NSCLC tumors incorporate free BCAAs into tissue protein and use BCAAs as a nitrogen source, whereas PDAC tumors have decreased BCAA uptake. These differences are reflected in expression levels of BCAA catabolic enzymes in both mice and humans. Loss of Bcat1 and Bcat2, the enzymes responsible for BCAA use, impairs NSCLC tumor formation, but these enzymes are not required for PDAC tumor formation, arguing that tissue of origin is an important determinant of how cancers satisfy their metabolic requirements.National Institutes of Health (U.S.) (Grant F30CA183474)National Institutes of Health (U.S.) (Grant T32GM007753

    Relative Contributions of Intrinsic Structural–Functional Constraints and Translation Rate to the Evolution of Protein-Coding Genes

    Get PDF
    A long-standing assumption in evolutionary biology is that the evolution rate of protein-coding genes depends, largely, on specific constraints that affect the function of the given protein. However, recent research in evolutionary systems biology revealed unexpected, significant correlations between evolution rate and characteristics of genes or proteins that are not directly related to specific protein functions, such as expression level and protein–protein interactions. The strongest connections were consistently detected between protein sequence evolution rate and the expression level of the respective gene. A recent genome-wide proteomic study revealed an extremely strong correlation between the abundances of orthologous proteins in distantly related animals, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. We used the extensive protein abundance data from this study along with short-term evolutionary rates (ERs) of orthologous genes in nematodes and flies to estimate the relative contributions of structural–functional constraints and the translation rate to the evolution rate of protein-coding genes. Together the intrinsic constraints and translation rate account for approximately 50% of the variance of the ERs. The contribution of constraints is estimated to be 3- to 5-fold greater than the contribution of translation rate

    COMBREX: a project to accelerate the functional annotation of prokaryotic genomes

    Get PDF
    COMBREX (http://combrex.bu.edu) is a project to increase the speed of the functional annotation of new bacterial and archaeal genomes. It consists of a database of functional predictions produced by computational biologists and a mechanism for experimental biochemists to bid for the validation of those predictions. Small grants are available to support successful bids.National Institute of General Medical Sciences (U.S.) (Go grant 1RC2GM092602-01

    COMBREX: a project to accelerate the functional annotation of prokaryotic genomes

    Get PDF
    COMBREX (http://combrex.bu.edu) is a project to increase the speed of the functional annotation of new bacterial and archaeal genomes. It consists of a database of functional predictions produced by computational biologists and a mechanism for experimental biochemists to bid for the validation of those predictions. Small grants are available to support successful bids.National Institute of General Medical Sciences (U.S.) (Go grant 1RC2GM092602-01

    The Functional Consequences of Mutualistic Network Architecture

    Get PDF
    The architecture and properties of many complex networks play a significant role in the functioning of the systems they describe. Recently, complex network theory has been applied to ecological entities, like food webs or mutualistic plant-animal interactions. Unfortunately, we still lack an accurate view of the relationship between the architecture and functioning of ecological networks. In this study we explore this link by building individual-based pollination networks from eight Erysimum mediohispanicum (Brassicaceae) populations. In these individual-based networks, each individual plant in a population was considered a node, and was connected by means of undirected links to conspecifics sharing pollinators. The architecture of these unipartite networks was described by means of nestedness, connectivity and transitivity. Network functioning was estimated by quantifying the performance of the population described by each network as the number of per-capita juvenile plants produced per population. We found a consistent relationship between the topology of the networks and their functioning, since variation across populations in the average per-capita production of juvenile plants was positively and significantly related with network nestedness, connectivity and clustering. Subtle changes in the composition of diverse pollinator assemblages can drive major consequences for plant population performance and local persistence through modifications in the structure of the inter-plant pollination networks

    Role of Duplicate Genes in Robustness against Deleterious Human Mutations

    Get PDF
    It is now widely recognized that robustness is an inherent property of biological systems [1],[2],[3]. The contribution of close sequence homologs to genetic robustness against null mutations has been previously demonstrated in simple organisms [4],[5]. In this paper we investigate in detail the contribution of gene duplicates to back-up against deleterious human mutations. Our analysis demonstrates that the functional compensation by close homologs may play an important role in human genetic disease. Genes with a 90% sequence identity homolog are about 3 times less likely to harbor known disease mutations compared to genes with remote homologs. Moreover, close duplicates affect the phenotypic consequences of deleterious mutations by making a decrease in life expectancy significantly less likely. We also demonstrate that similarity of expression profiles across tissues significantly increases the likelihood of functional compensation by homologs

    Coordinating the impact of structural genomics on the human α-helical transmembrane proteome

    Get PDF
    Given the recent successes in determining membrane-protein structures, we explore the tractability of determining representatives for the entire human membrane proteome. This proteome contains 2,925 unique integral α-helical transmembrane-domain sequences that cluster into 1,201 families sharing more than 25% sequence identity. Structures of 100 optimally selected targets would increase the fraction of modelable human α-helical transmembrane domains from 26% to 58%, providing structure and function information not otherwise available

    Conformational dynamics and internal friction in homopolymer globules: equilibrium vs. non-equilibrium simulations

    Get PDF
    We study the conformational dynamics within homopolymer globules by solvent-implicit Brownian dynamics simulations. A strong dependence of the internal chain dynamics on the Lennard-Jones cohesion strength Δ and the globule size N [subscript G] is observed. We find two distinct dynamical regimes: a liquid-like regime (for Δ Δ[subscript s] with slow internal dynamics. The cohesion strength Δ[subscript s] of this freezing transition depends on N G . Equilibrium simulations, where we investigate the diffusional chain dynamics within the globule, are compared with non-equilibrium simulations, where we unfold the globule by pulling the chain ends with prescribed velocity (encompassing low enough velocities so that the linear-response, viscous regime is reached). From both simulation protocols we derive the internal viscosity within the globule. In the liquid-like regime the internal friction increases continuously with Δ and scales extensive in N [subscript G] . This suggests an internal friction scenario where the entire chain (or an extensive fraction thereof) takes part in conformational reorganization of the globular structure.American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshi
    • 

    corecore