95 research outputs found

    Developing differences: early-life effects and evolutionary medicine

    Get PDF
    Variation in early-life conditions can trigger developmental switches that lead to predictable individual differences in adult behaviour and physiology. Despite evidence for such early-life effects being widespread both in humans and throughout the animal kingdom, the evolutionary causes and consequences of this developmental plasticity remain unclear. The current issue aims to bring together studies of early-life effects from the fields of both evolutionary ecology and biomedicine to synthesise and advance current knowledge of how information is used during development, the mechanisms involved, and how early-life effects evolved. We hope this will stimulate further research into early-life effects, improving our understanding of why individuals differ and how this might influence their susceptibility to disease. This article is part of the theme issue ‘Developing differences: early-life effects and evolutionary medicine’.</p

    Sources of variation in cuticular hydrocarbons in the ant formica exsecta

    Get PDF
    Phenotypic variation arises from interactions between genotype and environment, although how variation is produced and then maintained remains unclear. The discovery of the nest-mate recognition system in Formica exsecta ants has allowed phenotypic variation in chemical profiles to be quantified across a natural population of 83 colonies. We investigated if this variation was correlated or not with intrinsic (genetic relatedness), extrinsic (location, light, temperature) or social (queen number) factors. (Z)-9-Alkenes and n-alkanes showed different patterns of variance: island (location) explained only 0.2% of the variation in (Z)-9-alkenes, but 21¬–29% in n-alkanes, whereas colony of origin explained 96% and 45–49% of the variation in (Z)-9-alkenes and n-alkanes, respectively. By contrast, within-colony variance of (Z)-9-alkenes was 4%, and 23–34% in n-alkanes, supporting the function of the former as recognition cues. (Z)-9-Alkene and n-alkane profiles were correlated with the genetic distance between colonies. Only n-alkane profiles diverged with increasing spatial distance. Sampling year explained a small (5%), but significant, amount of the variation in the (Z)-9-alkenes, but there was no consistent directional trend. Polygynous colonies and populous monogynous colonies were dominated by a rich C23:1 profile. We found no associations between worker size, mound exposure, or humidity, although effect sizes for the latter two factors were considerable. The results support the conjecture that genetic factors are the most likely source of between-colony variation in cuticular hydrocarbons

    Intragroup competition predicts individual foraging specialisation in a group-living mammal

    Get PDF
    Individual foraging specialisation has important ecological implications, but its causes in group-living species are unclear. One of the major consequences of group living is increased intragroup competition for resources. Foraging theory predicts that with increased competition, individuals should add new prey items to their diet, widening their foraging niche (‘optimal foraging hypothesis’). However, classic competition theory suggests the opposite: that increased competition leads to niche partitioning and greater individual foraging specialisation (‘niche partitioning hypothesis’). We tested these opposing predictions in wild, group-living banded mongooses (Mungos mungo), using stable isotope analysis of banded mongoose whiskers to quantify individual and group foraging niche. Individual foraging niche size declined with increasing group size, despite all groups having a similar overall niche size. Our findings support the prediction that competition promotes niche partitioning within social groups and suggest that individual foraging specialisation may play an important role in the formation of stable social groupings.Peer reviewe

    Elevated glucocorticoid concentrations during gestation predict reduced reproductive success in subordinate female banded mongooses

    Get PDF
    Dominant females in social species have been hypothesized to reduce the reproductive success of their subordinates by inducing elevated circulating glucocorticoid (GC) concentrations. However, this ‘stress-related suppression' hypothesis has received little support in cooperatively breeding species, despite evident reproductive skews among females. We tested this hypothesis in the banded mongoose (Mungos mungo), a cooperative mammal in which multiple females conceive and carry to term in each communal breeding attempt. As predicted, lower ranked females had lower reproductive success, even among females that carried to term. While there were no rank-related differences in faecal glucocorticoid (fGC) concentrations prior to gestation or in the first trimester, lower ranked females had significantly higher fGC concentrations than higher ranked females in the second and third trimesters. Finally, females with higher fGC concentrations during the third trimester lost a greater proportion of their gestated young prior to their emergence from the burrow. Together, our results are consistent with a role for rank-related maternal stress in generating reproductive skew among females in this cooperative breeder. While studies of reproductive skew frequently consider the possibility that rank-related stress reduces the conception rates of subordinates, our findings highlight the possibility of detrimental effects on reproductive outcomes even after pregnancies have become established

    A veil of ignorance can promote fairness in a mammal society

    Get PDF
    Rawls argued that fairness in human societies can be achieved if decisions about the distribution of societal rewards are made from behind a veil of ignorance, which obscures the personal gains that result. Whether ignorance promotes fairness in animal societies, that is, the distribution of resources to reduce inequality, is unknown. Here we show experimentally that cooperatively breeding banded mongooses, acting from behind a veil of ignorance over kinship, allocate postnatal care in a way that reduces inequality among offspring, in the manner predicted by a Rawlsian model of cooperation. In this society synchronized reproduction leaves adults in a group ignorant of the individual parentage of their communal young. We provisioned half of the mothers in each mongoose group during pregnancy, leaving the other half as matched controls, thus increasing inequality among mothers and increasing the amount of variation in offspring birth weight in communal litters. After birth, fed mothers provided extra care to the offspring of unfed mothers, not their own young, which levelled up initial size inequalities among the offspring and equalized their survival to adulthood. Our findings suggest that a classic idea of moral philosophy also applies to the evolution of cooperation in biological systems. Obscuring knowledge of personal gains from individuals can theoretically maintain fairness in a cooperative group. Experiments show that wild, cooperatively breeding banded mongooses uncertain of kinship allocate postnatal care in a way that reduces inequality among offspring, suggesting a classic idea of moral philosophy can apply in biological systems.Peer reviewe

    Protocol for motor and language mapping by navigated TMS in patients and healthy volunteers; workshop report

    Get PDF
    Navigated transcranial magnetic stimulation (nTMS) is increasingly used for preoperative mapping of motor function, and clinical evidence for its benefit for brain tumor patients is accumulating. In respect to language mapping with repetitive nTMS, literature reports have yielded variable results, and it is currently not routinely performed for presurgical language localization. The aim of this project is to define a common protocol for nTMS motor and language mapping to standardize its neurosurgical application and increase its clinical value. The nTMS workshop group, consisting of highly experienced nTMS users with experience of more than 1500 preoperative nTMS examinations, met in Helsinki in January 2016 for thorough discussions of current evidence and personal experiences with the goal to recommend a standardized protocol for neurosurgical applications. nTMS motor mapping is a reliable and clinically validated tool to identify functional areas belonging to both normal and lesioned primary motor cortex. In contrast, this is less clear for language-eloquent cortical areas identified by nTMS. The user group agreed on a core protocol, which enables comparison of results between centers and has an excellent safety profile. Recommendations for nTMS motor and language mapping protocols and their optimal clinical integration are presented here. At present, the expert panel recommends nTMS motor mapping in routine neurosurgical practice, as it has a sufficient level of evidence supporting its reliability. The panel recommends that nTMS language mapping be used in the framework of clinical studies to continue refinement of its protocol and increase reliability.Peer reviewe

    Decoupling of Genetic and Cultural Inheritance in a Wild Mammal

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Cultural inheritance, the transmission of socially learned information across generations, is a non-genetic, ‘second inheritance system’ capable of shaping phenotypic variation in humans and many non-human animals[1-3]. Studies of wild animals show that conformity[4, 5] and biases toward copying particular individuals [6, 7] can result in the rapid spread of culturally transmitted behavioural traits and a consequent increase in behavioural homogeneity within groups and populations [8, 9]. These findings support classic models of cultural evolution [10, 11] which predict that many-to-one or one-to-many transmission erodes within-group variance in culturally inherited traits. However, classic theory [10, 11] also predicts that within-group heterogeneity is preserved when offspring each learn from an exclusive role model. We tested this prediction in a wild mammal, the banded mongoose (Mungos mungo), in which offspring are reared by specific adult carers that are not their parents, providing an opportunity to disentangle genetic and cultural inheritance of behaviour. We show using stable isotope analysis that young mongooses inherit their adult foraging niche from cultural role models, not from their genetic parents. As predicted by theory, one-to-one cultural transmission prevented blending inheritance and allowed the stable coexistence of distinct behavioral traditions within the same social groups. Our results confirm that cultural inheritance via role models can promote rather than erode behavioral heterogeneity in natural populations.The research was funded by a European Research Council Consolidator’s Grant (309249) and Natural Environment Research Council (UK) Standard Grant (NE/J010278/1) awarded to M.A.C

    Oxidative stress and life histories: unresolved issues and current needs

    Get PDF
    Life-history theory concerns the trade-offs that mold the patterns of investment by animals between reproduction, growth, and survival. It is widely recognized that physiology plays a role in the mediation of life-history trade-offs, but the details remain obscure. As life-history theory concerns aspects of investment in the soma that influence survival, understanding the physiological basis of life histories is related, but not identical, to understanding the process of aging. One idea from the field of aging that has gained considerable traction in the area of life histories is that life-history trade-offs may be mediated by free radical production and oxidative stress. We outline here developments in this field and summarize a number of important unresolved issues that may guide future research efforts. The issues are as follows. First, different tissues and macromolecular targets of oxidative stress respond differently during reproduction. The functional significance of these changes, however, remains uncertain. Consequently there is a need for studies that link oxidative stress measurements to functional outcomes, such as survival. Second, measurements of oxidative stress are often highly invasive or terminal. Terminal studies of oxidative stress in wild animals, where detailed life-history information is available, cannot generally be performed without compromising the aims of the studies that generated the life-history data. There is a need therefore for novel non-invasive measurements of multi-tissue oxidative stress. Third, laboratory studies provide unrivaled opportunities for experimental manipulation but may fail to expose the physiology underpinning life-history effects, because of the benign laboratory environment. Fourth, the idea that oxidative stress might underlie life-history trade-offs does not make specific enough predictions that are amenable to testing. Moreover, there is a paucity of good alternative theoretical models on which contrasting predictions might be based. Fifth, there is an enormous diversity of life-history variation to test the idea that oxidative stress may be a key mediator. So far we have only scratched the surface. Broadening the scope may reveal new strategies linked to the processes of oxidative damage and repair. Finally, understanding the trade-offs in life histories and understanding the process of aging are related but not identical questions. Scientists inhabiting these two spheres of activity seldom collide, yet they have much to learn from each other
    corecore