37 research outputs found

    Insulin-like growth factor-1 and site-specific cancers: A Mendelian randomization study.

    Get PDF
    Insulin-like growth factor-1 (IGF-1) is involved in several processes relevant to carcinogenesis. We used 416 single-nucleotide polymorphisms robustly associated with serum IGF-1 levels to assess the potential causal associations between this hormone and site-specific cancers through Mendelian randomization. Summary-level genetic association estimates for prostate, breast, ovarian, and lung cancer were obtained from large-scale consortia including individuals of European-descent. Furthermore, we estimated genetic associations with 14 site-specific cancers in European-descent individuals in UK Biobank. Supplementary analyses were conducted for six site-specific cancers using summary-level data from the BioBank Japan Project. Genetically predicted serum IGF-1 levels were associated with colorectal cancer. The odds ratio (OR) per standard deviation increase of IGF-1 levels was 1.11 (95% confidence interval [CI] 1.01-1.22; P = .03) in UK Biobank and 1.22 (95% CI 1.09-1.36; P = 3.9 × 10-4 ) in the BioBank Japan Project. For prostate cancer, the corresponding OR was 1.10 (95% CI 1.01-1.21; P = .04) in UK Biobank, 1.03 (95% CI 0.97-1.09; P = .41) in the prostate cancer consortium, and 1.08 (95% CI 0.95-1.22; P = .24) in the BioBank Japan Project. For breast cancer, the corresponding OR was 0.99 (95% CI 0.92-1.07; P = .85) in UK Biobank and 1.08 (95% CI 1.02-1.13; P = 4.4 × 10-3 ) in the Breast Cancer Association Consortium. There was no statistically significant association between genetically predicted IGF-1 levels and 14 other cancers. This study found some support for a causal association between elevated serum IGF-1 levels and increased risk of colorectal cancer. There was inconclusive or no evidence of a causal association of IGF-1 levels with prostate, breast, and other cancers

    Smoking, alcohol consumption, and cancer: A mendelian randomisation study in UK Biobank and international genetic consortia participants.

    Get PDF
    BACKGROUND: Smoking is a well-established cause of lung cancer and there is strong evidence that smoking also increases the risk of several other cancers. Alcohol consumption has been inconsistently associated with cancer risk in observational studies. This mendelian randomisation (MR) study sought to investigate associations in support of a causal relationship between smoking and alcohol consumption and 19 site-specific cancers. METHODS AND FINDINGS: We used summary-level data for genetic variants associated with smoking initiation (ever smoked regularly) and alcohol consumption, and the corresponding associations with lung, breast, ovarian, and prostate cancer from genome-wide association studies consortia, including participants of European ancestry. We additionally estimated genetic associations with 19 site-specific cancers among 367,643 individuals of European descent in UK Biobank who were 37 to 73 years of age when recruited from 2006 to 2010. Associations were considered statistically significant at a Bonferroni corrected p-value below 0.0013. Genetic predisposition to smoking initiation was associated with statistically significant higher odds of lung cancer in the International Lung Cancer Consortium (odds ratio [OR] 1.80; 95% confidence interval [CI] 1.59-2.03; p = 2.26 × 10-21) and UK Biobank (OR 2.26; 95% CI 1.92-2.65; p = 1.17 × 10-22). Additionally, genetic predisposition to smoking was associated with statistically significant higher odds of cancer of the oesophagus (OR 1.83; 95% CI 1.34-2.49; p = 1.31 × 10-4), cervix (OR 1.55; 95% CI 1.27-1.88; p = 1.24 × 10-5), and bladder (OR 1.40; 95% CI 1.92-2.65; p = 9.40 × 10-5) and with statistically nonsignificant higher odds of head and neck (OR 1.40; 95% CI 1.13-1.74; p = 0.002) and stomach cancer (OR 1.46; 95% CI 1.05-2.03; p = 0.024). In contrast, there was an inverse association between genetic predisposition to smoking and prostate cancer in the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome consortium (OR 0.90; 95% CI 0.83-0.98; p = 0.011) and in UK Biobank (OR 0.90; 95% CI 0.80-1.02; p = 0.104), but the associations did not reach statistical significance. We found no statistically significant association between genetically predicted alcohol consumption and overall cancer (n = 75,037 cases; OR 0.95; 95% CI 0.84-1.07; p = 0.376). Genetically predicted alcohol consumption was statistically significantly associated with lung cancer in the International Lung Cancer Consortium (OR 1.94; 95% CI 1.41-2.68; p = 4.68 × 10-5) but not in UK Biobank (OR 1.12; 95% CI 0.65-1.93; p = 0.686). There was no statistically significant association between alcohol consumption and any other site-specific cancer. The main limitation of this study is that precision was low in some analyses, particularly for analyses of alcohol consumption and site-specific cancers. CONCLUSIONS: Our findings support the well-established relationship between smoking and lung cancer and suggest that smoking may also be a risk factor for cancer of the head and neck, oesophagus, stomach, cervix, and bladder. We found no evidence supporting a relationship between alcohol consumption and overall or site-specific cancer risk

    Predicting the effect of statins on cancer risk using genetic variants from a Mendelian randomization study in the UK Biobank

    Get PDF
    Funder: National Institute for Health Research; FundRef: http://dx.doi.org/10.13039/501100000272Laboratory studies have suggested oncogenic roles of lipids, as well as anticarcinogenic effects of statins. Here we assess the potential effect of statin therapy on cancer risk using evidence from human genetics. We obtained associations of lipid-related genetic variants with the risk of overall and 22 site-specific cancers for 367,703 individuals in the UK Biobank. In total, 75,037 individuals had a cancer event. Variants in the HMGCR gene region, which represent proxies for statin treatment, were associated with overall cancer risk (odds ratio [OR] per one standard deviation decrease in low-density lipoprotein [LDL] cholesterol 0.76, 95% confidence interval [CI] 0.65–0.88, p=0.0003) but variants in gene regions representing alternative lipid-lowering treatment targets (PCSK9, LDLR, NPC1L1, APOC3, LPL) were not. Genetically predicted LDL-cholesterol was not associated with overall cancer risk (OR per standard deviation increase 1.01, 95% CI 0.98–1.05, p=0.50). Our results predict that statins reduce cancer risk but other lipid-lowering treatments do not. This suggests that statins reduce cancer risk through a cholesterol independent pathway

    Iron Status and Cancer Risk in UK Biobank: A Two-Sample Mendelian Randomization Study.

    Get PDF
    We conducted a two-sample Mendelian randomization study to explore the associations of iron status with overall cancer and 22 site-specific cancers. Single-nucleotide polymorphisms for iron status were obtained from a genome-wide association study of 48,972 European-descent individuals. Summary-level data for breast and other cancers were obtained from the Breast Cancer Association Consortium and UK Biobank. Genetically predicted iron status was positively associated with liver cancer and inversely associated with brain cancer but not associated with overall cancer or the other 20 studied cancer sites at p < 0.05. The odds ratios of liver cancer were 2.45 (95% CI, 0.81, 7.45; p = 0.11), 2.11 (1.16, 3.83; p = 0.02), 10.89 (2.44, 48.59; p = 0.002) and 0.30 (0.17, 0.53; p = 2 × 10-5) for one standard deviation increment of serum iron, transferrin saturation, ferritin and transferrin levels, respectively. For brain cancer, the corresponding odds ratios were 0.69 (0.48, 1.00; p = 0.05), 0.75 (0.59, 0.97; p = 0.03), 0.41 (0.20, 0.88; p = 0.02) and 1.49 (1.04, 2.14; p = 0.03). Genetically high iron status was positively associated with liver cancer and inversely associated with brain cancer

    Effects of tumour necrosis factor on cardiovascular disease and cancer: A two-sample Mendelian randomization study.

    Get PDF
    BACKGROUND: Tumour necrosis factor (TNF) inhibitors are used in the treatment of certain autoimmune diseases but given the role of TNF in tumour biology and atherosclerosis, such therapies may influence the risk of cancer and cardiovascular disease. We conducted a Mendelian randomization study to explore whether TNF levels are causally related to cardiovascular disease and cancer. METHODS: Single-nucleotide polymorphisms associated with TNF levels at genome-wide significance were identified from a genome-wide association study of 30 912 European-ancestry individuals. Three TNF-associated single-nucleotide polymorphisms associated with higher risk of autoimmune diseases were used as instrumental variables. Summary-level data for 14 cardiovascular diseases, overall cancer and 14 site-specific cancers were obtained from UK Biobank and consortia. FINDINGS: Genetically-predicted TNF levels were positively associated with coronary artery disease (odds ratio (OR) 2.25; 95% confidence interval (CI) 1.50, 3.37) and ischaemic stroke (OR 2.27; 95% CI 1.50, 3.43), and inversely associated with overall cancer (OR 0.54; 95% CI 0.42, 0.69), breast cancer (OR 0.51; 95% CI 0.39, 0.67), and colorectal cancer (OR 0.20; 95% CI 0.09, 0.45). There were suggestive associations of TNF with venous thromboembolism (OR 2.18; 95% CI 1.32, 3.59), endometrial cancer (OR 0.25; 95% CI 0.07, 0.94), and lung cancer (OR 0.45; 95% CI 0.21, 0.94). INTERPRETATION: This study found evidence of causal associations of increased TNF levels with higher risk of common cardiovascular diseases and lower risk of overall and certain cancers

    Selenium and cancer risk: Wide-angled Mendelian randomization analysis.

    Get PDF
    Funder: Swedish Cancer Society (Cancerfonden); Id: http://dx.doi.org/10.13039/501100002794Funder: EC‐Innovative Medicines Initiative (BigData@Heart)Evidence on the association between selenium and cancer risk is inconclusive. We conducted a Mendelian randomization study to examine the associations of selenium levels with 22 site-specific cancers and any cancer. Single nucleotide polymorphisms (SNPs) strongly associated with toenail and blood (TAB) and blood selenium levels in mild linkage disequilibrium (r2  < .3) were used as instrumental variables. Genetic associations of selenium-associated SNPs with cancer were obtained from the UK Biobank including a total of 59 647 cancer cases and 307 914 controls. Associations with P < .1 in UK Biobank were tested for replication in the FinnGen consortium comprising more than 180 000 individuals. The inverse-variance weighted method accounting for linkage disequilibrium was used to estimate the associations. Genetically predicted TAB selenium levels were not associated with the risk of the 22 site-specific cancers or any cancer (all 22 site-specific cancers). Similarly, we observed no strong association for genetically predicted blood selenium levels. However, genetically predicted blood selenium levels showed suggestive associations with risk of kidney cancer (odds ratio [OR] per one-unit increase in log-transformed levels: 0.83; 95% confidence interval [CI]: 0.67-1.03) and multiple myeloma (OR: 1.40; 95% CI: 1.02-1.93). The same direction of association for kidney cancer but not for multiple myeloma was observed in FinnGen. In the metaanalysis of UK Biobank and FinnGen, the OR of kidney cancer was 0.83 (95% CI: 0.69-1.00). Our study suggests that high selenium status may not prevent cancer development. The associations for kidney cancer and multiple myeloma need to be verified in well-powered studies
    corecore