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Abstract 

We conducted a two-sample Mendelian randomisation study to investigate the causal 

associations of type 2 diabetes mellitus (T2DM) with risk of overall cancer and 22 site-specific 

cancers. Summary-level data for cancer were extracted from the Breast Cancer Association 

Consortium and UK Biobank. Genetic predisposition to T2DM was associated with higher 

odds of pancreatic, kidney, uterine and cervical cancer, lower odds of oesophageal cancer and 

melanoma, but not associated with 16 other site-specific cancers or overall cancer. The odds 

ratios (95% confidence interval) were 1.13 (1.04, 1.22), 1.08 (1.00, 1.17), 1.08 (1.01, 1.15), 

1.07 (1.01, 1.15), 0.89 (0.81, 0.98), and 0.93 (0.89, 0.97) for pancreatic, kidney, uterine, 

cervical, and oesophageal cancer and melanoma, respectively. The association between T2DM 

and pancreatic cancer was also observed in a meta-analysis of this and a previous Mendelian 

randomisation study (odds ratio 1.08; 1.02, 1.14; p=0.009). There was limited evidence 

supporting causal associations between fasting glucose and cancer. Genetically predicted 

fasting insulin levels were positively associated with cancers of the uterus, kidney, pancreas 

and lung. The present study found causal detrimental effects of T2DM on several cancers. We 

suggested to reinforce the cancers screening in T2DM patients to enable the early detection of 

cancer. 

 

Keywords: cancer; fasting glucose; fasting insulin; Mendelian randomisation study; single-

nucleotide polymorphisms; type 2 diabetes  



	 3 

Introduction 

Type 2 diabetes mellitus (T2DM) and cancer are two major global health issues, causing 

around 5.0 and 8.7 million death and 143.0 and 208.3 million disability-adjusted life years in 

2015 worldwide, respectively (1, 2). Evidence from epidemiological studies indicates that 

T2DM is as a risk factor for overall cancer (3) and several site-specific cancers, such as 

colorectal (4, 5), liver (6), kidney (7, 8), uterine (9), and breast cancer (10). A bidirectional 

relationship has been suggested for T2DM and pancreatic cancer (11-15), whereas an inverse 

association has been observed between T2DM and risk of prostate cancer (16, 17). Findings 

for other site-specific cancers are conflicting (3) and the causality of the observed associations 

remains unclear due to possible residual confounding and reverse causality in observational 

studies.  

Exploiting genetic variants as proxies for a risk factor, Mendelian randomisation (MR) 

is a method that can strengthen the exposure-outcome association inference by diminishing the 

likelihood of confounding and eliminating reverse causality in conventional observational 

studies (18). This method minimizes confounding since genetic variants are randomly assorted 

at conception, thereby being irrelevant with self-adapted lifestyle and environmental factors. 

In addition, it overcomes reverse causality as allelic randomisation antedates the disease’s 

onset.  

Given the inconsistent results and potential methodological limitations of previous 

observational studies of T2DM and cancer risk, we conducted a two-sample MR study to assess 

the causal associations of liability to T2DM with the risk of overall cancer and 22 site-specific 

cancers. For pancreatic cancer, a bidirectional MR study was conducted. We additionally 

explored the causal associations of genetically predicted fasting glucose (FG) and fasting 

insulin (FI) levels with the same cancer outcomes in secondary analyses. Moreover, we 
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performed meta-analyses of available MR studies of the associations of T2DM, FG or FI levels 

with cancer risk.   

 

Methods 

Data sources  

This two-sample MR study utilised summary-level genetic data from the 

DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) consortium (19), the Meta-

Analyses of Glucose and Insulin-related traits (MAGIC) Consortium (20), Pancreatic Cancer 

Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4) 

(21), Breast Cancer Association Consortium (BCAC) (22), and UK Biobank (23) 

(Supplementary Table 1). Data for breast cancer came from BCAC and UK Biobank and 

were based on 228 951 European-descent participants (122 977 breast cancer cases and 105 

974 controls) and 367 643 European-descent participants (13 666 breast cancer cases and 353 

977 controls), respectively. The GWAS in BCAC used Phase 3 of 1000 Genomes Project as 

reference panel in imputation stage and adjusted for genetic principal components and country. 

From UK Biobank, we additionally derived genetic associations data, adjusted for age, sex and 

ten genetic principal components, for overall cancer and 21 other site-specific cancers among 

367 643 unrelated participants. We identified a total of 75 037 cancer cases and information 

on incident cancer cases was obtained until March 31, 2017 in UK Biobank. Cancer diagnosis 

source of included studies is shown in Supplementary Table 2. Most studies defined the 

cancer cases based on cancer registry or hospital/clinics data. The original genome-wide 

association studies (GWASs) had been approved by corresponding ethical committee and the 

present study was approved by the Swedish Ethical Review Authority. 

 

Instrumental variable selection 
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Instrumental variables selection for T2DM, and  FG and FI levels was based on a meta-analysis 

of 32 GWASs with 74 124 type 2 diabetes cases and 824 006 controls of European ancestry 

(known as DIAGRAM consortium) (19) and a genome-wide association meta-analysis of up 

to 133 010 individuals of European ancestry without diabetes (known as MAGIC) (20), 

respectively. Instrumental variables for pancreatic cancer were obtained from a GWAS of 9040 

cancer cases and 12 496 controls of European ancestry from PanScan and PanC4 (21). Single 

nucleotide polymorphisms (SNPs) that met the locus-wide significance level (p<10-5) and the 

genome-wide statistical significance threshold (p<5×10-8) were proposed as instrumental 

variables for T2DM (n=403), FG (n=35), FI (n=18) and pancreatic cancer (n=22). Selected 

SNPs explained around 17.4%, 4.8% and 1.2% variance associated with T2DM, FG and FI, 

respectively. Used instrumental variables for T2DM and glycaemic traits were validated in 

previous studies (24-26). Previous studies reported that the effects of T2DM and FI-related 

genetic variants in FTO gene were entirely driven by body mass index-mediation effects (20, 

27). Thus, we excluded SNPs in or near FTO gene region, leaving 399 SNPs as instrumental 

variables for T2DM, 35 for FG, and 17 for FI. With regard to T2DM, 295 SNPs (variants in 

FTO excluded) reaching the genome-wide significance level were used in the sensitivity 

analysis. Detailed information for instrumental variables of T2DM, FG, FI and pancreatic 

cancer is presented in Supplementary Table 3 and Supplementary Table 4. 

 

Meta-analysis of MR studies 

The procedure of systematic review and literature selection is shown in Supplementary 

Figure 1. A systematic literature search was conducted in two datasets of PubMed and Embase. 

We identified 165 papers published before October 17th, 2019, by use of the following medical 

subject heading terms and/or text words: “diabetes”, “glucose”, “insulin”, “glycemic”, 

“cancer”, “carcinoma”, “Mendelian randomization”, “Mendelian randomisation”, 
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“instrumental variable causal inference”, “causal inference using instrumental variable” and 

“causal inference using genetic variants”. After title, abstract and full text screening, seven 

studies were included in this meta-analysis (28-34). Details of exclusion criteria is presented 

in Supplementary Figure 1. We extracted data of publication data (the first author's name and 

year of publication), T2DM and related traits (FG and FI), cancer site, number of cancer cases 

and controls, number of SNPs used as instrumental variables, variance explained by used SNPs 

and risk estimates with their corresponding confidence intervals. Information of included 

studies is shown in Supplementary Table 5.  

 

Statistical analysis 

The random effects inverse-variance weighted method was used to assess the associations of 

genetically predicted T2DM, FG FI with overall cancer and 22 site-specific cancers. Cochrane 

I2 was used to measure heterogeneity among instrumental variables. For T2DM, three 

sensitivity analyses, including the weighted median, MR-Egger and MR-PRESSO methods, 

were performed for the associations that showed suggestive evidence of associations in the 

inverse-variance weighted analysis. The weighted median approach provides accurate 

estimates with the prerequisite that at least half of the instrumental variables are valid (35). The 

MR-Egger regression detects and adjusts for pleiotropy; however, the derived estimates are 

imprecise (36). The MR-PRESSO method is able to detect and correct for possible outliers, 

thereby removing horizontal pleiotropy via outlier removal (37). To minimize the influence 

from body mass index, a multivariable MR method was used with the adjustment of body mass 

index. In the meta-analysis, effect sizes from different MR studies were combined using fixed-

effects meta-analysis. Odds ratios (ORs) and confidence intervals (CIs) of cancer were scaled 

to one-unit increase in log odds of liability to T2DM and one standard deviation (SD) increase 

in log of genetically predicted FG and FI levels. The SD of FG and FI corresponds to 0.65 
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mmol/L and 0.60 pmol/L, respectively, based on the Fenland or Ely studies (38, 39). For 

pancreatic cancer, we additionally performed a bidirectional MR analysis. Power calculation 

for the analyses of T2DM was based on a web-tool (40) and results are displayed in 

Supplementary Table 6. All statistical tests were two-sided and performed in Stata/SE 15.0 

and R 3.6.0 software. We did not use p values strictly to define statistical significance but 

interpreted the results based on the strengths of the associations (41) as well as the consistency 

across sensitivity analyses. 

 

Data availability 

Data for T2DM-associated SNPs can be obtained from the DIAGRAM consortium 

(https://diagram-consortium.org/index.html).  Data for fasting glucose and insulin-associated 

SNPs can be obtained from MAGIC (https://www.magicinvestigators.org/). Summary-level 

data from BCAC are publicly available (http://bcac.ccge.medschl.cam.ac.uk/). The PanScan 

and PanC4 genome-wide association data are available through dbGAP (accession numbers 

phs000206.v5.p3 and phs000648.v1.p1, respectively). UK Biobank data are available through 

application (https://www.ukbiobank.ac.uk/). Summary-level data for the used SNPs in the 

present study are available upon a reasonable request to the corresponding author. 

 

Results 

We found no MR evidence of association between genetic liability to T2DM and overall cancer 

in the primary analysis or the sensitivity analyses (Figure 1). However, there was some 

evidence of associations of genetic liability to T2DM with higher odds of liver, pancreatic, 

kidney, uterine, and cervical cancer and lower odds of melanoma and oesophageal cancer 

(Figure 2). The ORs per one-unit increase in genetically predicted log odds of T2DM were 

1.16 (95% CI, 0.99, 1.36; p=0.059) for liver cancer, 1.13 (95% CI, 1.04, 1.22; p=0.002) for 
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pancreatic cancer, 1.08 (95% CI, 1.00, 1.17; p=0.039) for kidney cancer, 1.08 (95% CI, 1.01, 

1.15; p=0.031) for uterine cancer, 1.07 (95% CI, 1.01, 1.15; p=0.031) for cervical cancer, 0.93 

(95% CI, 0.89, 0.97; p=0.001) for melanoma and 0.89 (95% CI, 0.81, 0.98; p=0.018) for 

oesophageal cancer (Figure 2). Estimates of similar magnitude were observed between genetic 

liability to T2DM and thyroid cancer (OR=1.08; 95% CI, 0.94, 1.24; p=0.281) and brain cancer 

(OR=0.92; 95% CI, 0.84, 1.02; p=0.104) (Figure 2). The findings were consistent between 

analyses using 399 SNPs and 295 SNPs for T2DM (Supplementary Figure 2). Results of 

sensitivity analyses showed same patterns in the analysis of oesophageal and pancreatic cancer 

and melanoma (Figure 3). We detected significant heterogeneity in the analysis of uterine and 

liver cancer and melanoma, and pleiotropy in the MR-Egger analysis of cervical cancer. After 

outlier removal, all significant associations obtained from inverse-variance weighted model 

remained in the MR-PRESSO analysis. In addition, a suggestive positive association between 

genetically predicted risk of pancreatic cancer and T2DM was observed in the reverse MR 

analysis (Supplementary Figure 3). After adjusting for body mass index, the patterns of the 

associations between genetically predicted log odds of T2DM and cancers remained albeit with 

wider CIs (Supplementary Figure 4).  

In the meta-analysis combining the present MR findings with those of previous MR 

studies (Supplementary Table 5), an association was observed between genetically predicted 

log odds of T2DM and pancreatic cancer (OR=1.08; 95% CI, 1.02, 1.14; p=0.009) among a 

total of 8374 pancreatic cancer cases. The results of meta-analysis showed no associations of 

genetically predicted log odds of T2DM with kidney, uterine, or ovarian cancer (Figure 4).  

There was limited evidence of associations of genetically predicted FG and FI levels 

with overall cancer and the 22 site-specific cancers (Supplementary Figure 5, 

Supplementary Figure 6, and Supplementary Figure 7). However, the precision was low in 

most analyses and the magnitude of the estimates was relatively strong for some cancer sites. 
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For example, the OR was above 1.5 for genetically predicted high FG levels in relation to 

biliary tract cancer (Supplementary Figure 6). In addition, for FI levels, the ORs were above 

1.5 for kidney, uterine, cervical, and stomach cancer and below 0.5 for liver cancer 

(Supplementary Figure 7).     

In the meta-analysis, there was no evidence of association between genetically 

predicted FG levels and five site-specific cancers (Supplementary Figure 8). Genetically 

predicted FI levels showed evidence of positive associations with cancers of the pancreas, 

kidney, uterus, and lung by combining the findings from this MR study and previous MR 

studies (Supplementary Figure 9).  

 

Discussion 

The present study is the first MR study that systematically investigated the causal associations 

of genetic liability to T2DM and related traits with overall cancer and 22 site-specific cancers. 

We found evidence that genetic liability to T2DM was associated with increased risks of 

pancreatic, kidney, uterine and cervical cancer and with lower risks of melanoma and 

oesophageal cancer. The positive association between genetic liability to T2DM and pancreatic 

cancer was further verified in a supplementary meta-analysis of MR studies. There was limited 

MR evidence supporting causal associations between genetically predicted FG and any cancer 

but genetically predicted high FI levels increased the risks of pancreatic, kidney, uterine, and 

lung cancer.  

The present MR findings do not support observational studies suggesting an elevated 

risk of overall cancer among T2DM patients (3). An umbrella meta-analysis of 27 studies found 

that having T2DM was associated with a 10% higher risk of developing cancer (38 010 cancer 

cases) and a 16% higher cancer mortality rate (11 386 cancer-caused deaths) (3). In a national 

register-based cohort study in Australia, the standardized incidence and mortality ratios for all 
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cancers combined were significantly higher (ORs ranging from 1.03 to 1.22) among both men 

and women with T2DM than in non-diabetic individuals (16). However, our findings were in 

line with a recent individual-level MR study with 10 536 Japanese adults (3541 cancer cases). 

Using 29 SNPs as instrumental variables for T2DM, that study found no strong evidence 

supporting an association between T2DM and overall cancer (42). The discrepancy with our 

overall cancer findings may be explained by the driver effects of the T2DM-unrelated cancers 

that contributed a large proportion of cancer cases, including breast cancer (18%), prostate 

cancer (10%), and colorectal cancer (7%), in the present MR study, or from residual 

confounding or reverse causation bias in the observational studies.  

Findings of the present MR study and the meta-analysis of MR studies showed a 

consistent causal positive association between T2DM and pancreatic cancer, supporting 

observational studies. An umbrella meta-analysis of 27 studies obtained a pooled OR of 1.95 

when compared T2DM patients with controls based on 52 445 pancreatic cancer cases (3). It 

has been demonstrated that both new-onset and longstanding T2DM facilitate the development 

of pancreatic cancer (11, 12). Pathophysiologically, this may relate to carcinogenic or cancer-

promoting effects of glucose and glycation end products in reactive oxygen species generation, 

DNA damage and cell proliferation (15, 43, 44). It could also be due to the role of diabetes in 

the metabolic syndrome which is associated with increased risk of pancreatic cancer (15, 45), 

or due to increased insulin levels (15). Pre-diabetes is characterised by a long-standing increase 

in insulin secretion by the beta cells of the pancreas to compensate for insulin-resistance which 

occurs in the early stages of diabetes development. Such an increase in insulin in the pancreatic 

portal circulation could be carcinogenic or cancer-promoting, as insulin has proliferative 

effects (15). It is therefore notable that we also report a positive association between fasting 

insulin levels our findings in combination suggest that the insulin resistance of early diabetes, 

in combination with hyperglycaemia may increase risk of pancreatic cancer and importantly 
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this could be targeted with insulin-sensitizing agents such as metformin which reduce such risk 

(46). Nevertheless, a recent MR study did not observe a positive association between diabetes 

and pancreatic cancer among Japanese adults. This null finding might be caused by inadequate 

power since the study only had 129 pancreatic cancer cases (42).  

A bidirectional relationship between T2DM and pancreatic cancer has been found in 

recent years (11, 15). Pancreatic cancer can increase diabetes risk through enhanced insulin 

secretion with consequent insulin resistance, or, due to destruction of pancreatic tissue with 

loss of insulin-producing beta cells. Even though several pathological features, such as insulin 

levels and glucose-dependent insulinotropic polypeptide levels, were different between new-

onset T2DM and pancreatic cancer-caused T2DM, inaccurate classification of diabetes was 

common in clinical practice (15). Thus, the established observational association between 

T2DM and pancreatic cancer could be the result of reverse causality. The present study using 

MR design confirmed a causal pathway from T2DM to pancreatic cancer but also found 

suggestive evidence of an inverse causal pathway from pancreatic cancer to T2DM risk. This 

could be important clinically, and with further research the development of diabetes or pre-

diabetes could be useful in monitoring cancer progression. 

The present study also detected possible positive associations of liability to T2DM with 

some other site-specific cancers, with the strongest evidence for kidney, uterine, and cervical 

cancer. A systematic review including nine cohort studies stated that patients with diabetes had 

a significant increased risk of kidney cancer after adjusting for body mass index and cigarette 

smoking (8). It could relate to increased exposure to carcinogenic or cancer-promoting growth 

factors or insulin-like products due to reduced excretion, or, as a consequence of urinary tract 

infections which are common due to the relative immunosuppression seen in diabetes (47, 48). 

Similarly, the association of T2DM with uterine cancer is supported by the findings of a meta-

analysis of 16 observational studies with multivariate adjustment (49). However, studies 
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concerning the association of T2DM with cervical cancer are limited and conflicting. A 

retrospective cohort study with 328 994 diabetic patients and 327 572 non-diabetic participants 

found that newly diagnosed T2DM cases (within 3 month) had significantly increased risk of 

cervical cancer. However, the risk was not higher among T2DM patients after the initial 3-

month period compared with those without T2DM (50). In another study including 397 783 

adults, the prevalence of cervical cancer was 30% higher in diabetic group compared with non-

diabetic counterparts with adjustment of age, body mass index, ethnicity, lifestyle and physical 

activity (51). A nation-wide Australian study showed that long-term T2DM was associated 

with the age-standardized incidence ratio of cervical cancer but was not with mortality from 

cervical cancer (16). Further studies are warranted to verify the causal positive association 

between T2DM and cervical cancer.  

Our finding of an inverse association between T2DM and melanoma is in line with 

most but not all observational studies. A nationwide hospital-based study showed that the risk 

of melanoma for familial T2D patients was lower among 26 641 patients (including 125 126 

T2DM patients) who had an T2DM affected family member compared with all patients in 

Sweden (52). Another nationwide study in Australia also found a decreased risk of melanoma 

among 953 382 T2DM cases compared with the general Australian population (16). 

Nonetheless, a study with 4501 578 veterans admitted to Veterans Affairs hospitals reported 

that men with diabetes had a higher risk of melanoma (53). With regard to oesophageal cancer, 

previous findings were inconsistent. Three meta-analyses documented a positive association 

between T2DM and oesophageal cancer; however, the results might be less robust due to 

substantial heterogeneity and potential confounding factors within the included studies (3, 54, 

55). A large-scale cohort study of 4501 578 black and white U.S. veterans found that T2DM 

male patients had a decreased risk of oesophageal cancer (53). Findings of two studies focusing 

on T2DM and risk of oesophageal cancer in Australian and Asian population showed no 
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association between diabetes diagnosis and risk of oesophageal cancer (16, 56). Thus, the role 

of T2DM in oesophageal cancer development and mortality needs more investigation.  

Even though most observational studies observed a strong inverse association between 

T2DM and risk of prostate cancer (17), the present study provided limited evidence supporting 

such a causal association, which is supported by a previous MR study (25). The possible reason 

explaining the discrepancy is anticancer effect of several drugs used for the management of 

T2DM, such as metformin and thiazolidinediones (57) in previous observational studies. There 

was suggestive evidence of a positive association of T2DM with liver cancer in the present MR 

study, confirming previous observational findings (3) and is likely to occur through driving 

non-alcoholic fatty liver disease which can progress to hepatocellular carcinoma.  

The detrimental effects of T2DM on certain site-specific cancers may be driven by high 

insulin levels in response to insulin resistance which occurs in the development of pre-diabetes. 

It is therefore notable that we found positive associations of both T2DM and FI with pancreatic, 

kidney and uterine cancer, which suggests a possible pathophysiologic mechanism. Meta-

analysis of FI was also positively associated with lung cancer risk. Observational studies have 

proposed that hyperinsulinemia increases the risk of several cancers, such as pancreatic (58), 

uterine (59), and gastric (60) and kidney (61) cancer, but not lung cancer (62) and insulin has 

multiple potential carcinogenic or cancer-promoting effects (63). Although limited evidence of 

an association between FG and cancer was found in the present study, except for a possible 

positive association with biliary tract cancer (64), hyperglycaemia might play a role in the onset 

of certain cancers, especially liver (65) and bladder (64, 65) cancer. Inflammation (66), 

elevated Haemoglobin A1c levels (67), and drugs used for the management of T2DM (68) may 

also mediate the pathway from T2DM to cancer. Detailed mechanisms need further 

investigations. Further validating our findings or hypothesis, several T2DM medications have 

been revealed to lower the risk of common cancers, such as lung, colorectal and breast cancer, 
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in pre-clinical and/or clinical settings among diabetes patients (69, 70). Review articles 

suggested that even though metformin and thiazolidinedione appeared to inhibit the 

proliferation and growth of certain cancer types in preclinical data, a vast majority of clinical 

trials have been conducted to assess the usefulness of these medications in cancer prevention 

and treatment (69, 70). Those results will facilitate the assessment of the place of metformin in 

cancer prevention and therapy and define the target populations. 

A major strength of this study is the MR study design, which diminishes confounding and 

reverse causality potentially biasing the results in observational studies. In addition, we 

comprehensively assessed the causal associations of T2DM and related-traits with overall 

cancer and 22 site-specific cancers using summary-level data from large genetic consortia. We 

conducted our study merely among European populations. Thus, the results were less likely to 

be biased by population stratification, but this confined the transferability of our findings to 

other populations.	A major limitation is that the number of cases was few for several site-

specific cancers, causing low precision of the estimates. Thus, it is likely that we have missed 

weak associations. However, we have performed a systematic review and meta-analysis to 

combine the data from the previous and present MR studies, thereby expanding the sample size 

and increasing the accuracy of the estimation as possible. Furthermore, we interpreted results 

relying on the consistency across three sensitivity analyses and the strengths of the associations, 

but not the significance level (41). Even though there was heterogeneity among instrumental 

variables in a few analyses, no pleiotropy in the MR-Egger suggested balanced pleiotropy, 

which is less likely to bias the results (36). We still cannot exclude that there is any direct 

causal pathway from the T2DM-predisposing genetic variants to cancer. A further limitation is 

that we examined the liability to T2DM rather than the disease itself. Our results are therefore 

not fully comparable with those of observational studies where study participants have or do 

not have a T2DM diagnosis. Even though most of the included studies defined cancer cases 
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based on a reliable source, such as registry and hospital/clinics data, a possible detection bias 

in T2DM patients may overestimate the association between T2DM and cancer. Nonetheless, 

considering that we examined the association of T2DM with over 20 site-specific cancers, it is 

less likely that an increased or decreased chance of being diagnosed with a site-specific cancer 

is caused by the diagnosis of diabetes assuming no causal association between them. 

 

Conclusions 

This MR study strengthened the evidence in favour of causal associations of T2DM with 

increased risks of pancreatic, kidney, uterine and cervical cancer, and decreased risks of 

oesophageal cancer and melanoma. Additionally, there was evidence of a positive association 

of FI levels with some overlapping cancers, which may suggest that insulin resistance in early 

diabetes may contribute to this risk. This study lent limited support to causal associations of 

T2DM, FG, and FI with overall cancer risk. We suggest a higher index of suspicion for cancer 

and reinforcement of cancer screening recommendations among patients with T2DM to enable 

the early detection of cancer in this group of patients. 
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Figure 1. Association between type 2 diabetes mellitus and overall cancer in UK Biobank 
with 75 037 cancer cases and 292 606 non-cancer participants 
CI indicates confidence interval; MR-PRESSO, Mendelian randomization-pleiotropy residual 
sum and outlier; IVW, inverse-variance weighted; OR, odds ratio. Heterogeneity was observed 
in both analyses. There was no detected pleiotropy in MR-Egger analyses. Two and three 
outliers were detected and corrected in the MR-PRESSO analysis using 399 SNPs and 295 
SNPs for T2DM, respectively.  
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Figure 2. Associations between type 2 diabetes mellitus (399 SNPs) and 22 site-specific 
cancers in UK Biobank 
BCAC indicates breast cancer association consortium; CI; confidence interval; ER, oestrogen 
receptor; OR, odds ratio; UKBB, UK Biobank. 
All estimations were based on the inverse-variance weighted method.  
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Figure 3. Sensitivity analyses of the associations between type 2 diabetes mellitus and 
certain site-specific cancers in UK Biobank 
CI indicates confidence interval; MR-PRESSO, Mendelian randomization-pleiotropy residual 
sum and outlier; IVW, inverse-variance weighted; OR, odds ratio. Heterogeneity was observed 
in the analysis of uterine, liver and melanoma cancer. There was detected pleiotropy in MR-
Egger analysis of cervix cancer. One and three outliers were detected and corrected in the MR-
PRESSO analysis of cervix and liver cancer, respectively. 
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Figure 4. Meta-analysis of the association of type 2 diabetes mellitus with certain site-
specific cancers  
CI indicates confidence interval; OR, odds ratio; SD, standard deviation; UKBB, UK Biobank. 
*Effect size in Song M study was estimated in men and women separately.  
 
	


