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Abstract Laboratory studies have suggested oncogenic roles of lipids, as well as

anticarcinogenic effects of statins. Here we assess the potential effect of statin therapy on cancer

risk using evidence from human genetics. We obtained associations of lipid-related genetic variants

with the risk of overall and 22 site-specific cancers for 367,703 individuals in the UK Biobank. In

total, 75,037 individuals had a cancer event. Variants in the HMGCR gene region, which represent

proxies for statin treatment, were associated with overall cancer risk (odds ratio [OR] per one

standard deviation decrease in low-density lipoprotein [LDL] cholesterol 0.76, 95% confidence

interval [CI] 0.65–0.88, p=0.0003) but variants in gene regions representing alternative lipid-

lowering treatment targets (PCSK9, LDLR, NPC1L1, APOC3, LPL) were not. Genetically predicted

LDL-cholesterol was not associated with overall cancer risk (OR per standard deviation increase

1.01, 95% CI 0.98–1.05, p=0.50). Our results predict that statins reduce cancer risk but other lipid-

lowering treatments do not. This suggests that statins reduce cancer risk through a cholesterol

independent pathway.

Introduction
Statins are inhibitors of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), which is the

rate-limiting enzyme in the mevalonate pathway; a pathway producing a range of cell signaling mol-

ecules with the potential to regulate oncogenesis. This is supported by strong laboratory evidence

that statins induce anticarcinogenic effects on cell proliferation and survival in various cell lines (Sła-

wińska-Brych et al., 2014; Crosbie et al., 2013; Ishikawa et al., 2014; Chang et al., 2013), and

reduce tumor growth in a range of in vivo models (Narisawa et al., 1996a; Inano et al., 1997;

Narisawa et al., 1996b; Clutterbuck et al., 1998; Kikuchi et al., 1997; Hawk et al., 1996). Further-

more, epidemiological studies of pre-diagnostic use of statins have been associated with reduced

risk of specific cancer types (Khurana et al., 2007; Poynter et al., 2005; Pocobelli et al., 2008).

However, meta-analyses of cardiovascular-focused randomized controlled trials have shown no effect
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of statins on cancer (Dale et al., 2006; Farooqi et al., 2018). Conclusions from these trials are lim-

ited as they lack adequate power and longitudinal follow-up necessary for assessing the impact on

cancer risk. At present, no clinical trials have been designed to assess the role of statins in primary

cancer prevention and their role in chemoprevention remains uncertain.

A putative protective effect of statins on cancer development could be through either choles-

terol-dependent or independent effects (Goldstein and Brown, 1990; Mullen et al., 2016;

Yeganeh et al., 2014; Denoyelle et al., 2001). Cholesterol is a key mediator produced by the

mevalonate pathway and is essential to cell signaling and membrane structure, with evidence dem-

onstrating the potential to drive oncogenic processes and tumor growth (Chen and Resh, 2002;

Li et al., 2006). However, the epidemiological relationships between circulating cholesterol and can-

cer risk remain unclear. Individual observational studies have reported positive (Kitahara et al.,

2011; Strohmaier et al., 2013), inverse (Kitahara et al., 2011; Strohmaier et al., 2013;

Melvin et al., 2012; Katzke et al., 2017), and no association (Salonen, 1982; JPHC Study Group

et al., 2009; Van Hemelrijck et al., 2012; Ma et al., 2016) between circulating levels of total cho-

lesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and tri-

glycerides with the risk of overall and site-specific cancers. Different cancer types have distinct

underlying pathophysiology, and meta-analyses of observational studies highlight a likely complex

relationship which varies according to both lipid fraction (Vı́lchez et al., 2014; Alsheikh-Ali et al.,

2008) and cancer type (Ma et al., 2016; Lin et al., 2017; Passarelli and Newcomb, 2016; Yao and

Tian, 2015). Furthermore, cancer can lower cholesterol levels for up to 20 months before diagnosis

(Kritchevsky et al., 1991). Thus, the true relationship between lipids and cancer development

remains equivocal.

Mendelian randomization is an epidemiological approach that assesses associations between

genetically predicted levels of a risk factor and a disease outcome to predict the causal effect of the

risk factor on an outcome (Davey Smith and Hemani, 2014). The use of genetic variants minimizes

the influence of reverse causality and confounding factors on estimates. Mendelian randomization

studies also have the potential to predict the outcomes of trials for specific therapeutic interventions.

A limited number of Mendelian randomization studies have investigated the relationship between

HMGCR inhibition and cancer (PRACTICAL consortium et al., 2016; Rodriguez-Broadbent et al.,

2017; Orho-Melander et al., 2018; Nowak and Ärnlöv, 2018; Yarmolinsky et al., 2020), with pro-

tective associations observed for prostate cancer (PRACTICAL consortium et al., 2016), colorectal

cancer (Rodriguez-Broadbent et al., 2017), breast cancer (Orho-Melander et al., 2018;

Nowak and Ärnlöv, 2018), and ovarian cancer (Yarmolinsky et al., 2020). However, no comprehen-

sive Mendelian randomization investigation has evaluated the predicted impact of HMGCR inhibition

or the causal role of specific lipid fractions on the risk of many of the most common site-specific

cancers.

Here we investigate the relationship between HMGCR inhibition and the risk of overall cancer

and site-specific cancers using genetic variants in the HMGCR gene region. To understand whether

statins may influence cancer risk through lipid-related mechanisms, we also assess the relationship

between lipids and cancer risk by polygenic Mendelian randomization analyses using common lipid-

associated genetic variants. Additionally, to mimic other lipid-lowering pharmaceutical interventions,

gene-specific analyses were performed using variants in or near gene regions targeted by these

therapies.

Results

Participant characteristics and power calculations
Baseline characteristics of the participants in the UK Biobank and numbers of outcomes are provided

in Table 1. In total, 75,037 of the participants had a cancer event, of which 48,674 participants had

one of the 22 defined site-specific cancers. Power calculations for the various analyses are presented

in Figure 1 (site-specific cancers) and Supplementary file 1 (overall cancer). The number of cases

ranged from 324 for liver cancer to 13,666 for breast cancer with an overall median number of 1462

cases across cancer sites. Gene-specific analyses were only well-powered for overall cancer. Poly-

genic analyses were well-powered to detect moderate effects for overall cancer and common site-

specific cancers but less well-powered for less common site-specific cancers.
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Gene-specific analyses for HMGCR and other drug proxy variants
Associations for specific gene regions representing targets of lipid-lowering drugs are displayed in

Figure 2 and Figure 2—figure supplements 1–6. For overall cancer, there was evidence of associa-

tion for variants in the HMGCR gene region (odds ratio [OR] 1.32, 95% confidence interval [CI] 1.13–

1.53, p=0.0003) but not for other gene regions: for PCSK9 (OR 1.03, 95% CI 0.92–1.14, p=0.66), for

LDLR (OR 0.99, 95% CI 0.92–1.07, p=0.86), for NPC1L1 (OR 0.87, 95% CI 0.73–1.04, p=0.13), for

APOC3 (OR 1.08, 95% CI 0.98–1.19, p=0.15), or for LPL (OR 1.03, 95% CI 0.95–1.13, p=0.45). The

association of variants in the HMGCR gene region with overall cancer remained broadly similar when

restricting outcomes to the 48,674 individuals who had one of the 22 site-specific cancers (OR 1.29,

Table 1. Baseline characteristics of the UK Biobank participants included in this study and

the numbers of outcome events.

Characteristic or cancer site/type Mean (SD) or N (%)†

Sample size 367,703 (100)

Female 198,904 (54.1)

Age at baseline 57.2 (8.1)

Body mass index 27.3 (4.8)

Systolic blood pressure 137.6 (18.6)

Diastolic blood pressure 82.0 (10.1)

Smoking status (current/ex/ never)* 37,866 (10.3)/185,704 (50.5)/143,777 (39.1)

Alcohol status (current/ex/ never)* 342,797 (93.2)/12,732 (3.5)/11,646 (3.2)

History of type 2 diabetes 15,834 (4.3)

Overall cancer 75,037 (20.4)

Breast 13,666 (6.9)

Prostate 7872 (4.7)

Lung 2838 (0.8)

Bowel 5486 (1.5)

Melanoma 4869 (1.3)

Non-Hodgkin’s lymphoma 2296 (0.6)

Kidney 1310 (0.4)

Head/neck 1615 (0.4)

Brain 810 (0.2)

Bladder 2588 (0.7)

Pancreas 1264 (0.3)

Uterus 1931 (1.0)

Leukaemia 1403 (0.4)

Esophagus 843 (0.2)

Ovaries 1520 (0.8)

Gastric 736 (0.2)

Liver 324 (0.1)

Myeloma 656 (0.2)

Thyroid 375 (0.1)

Biliary 387 (0.1)

Cervix 1928 (1.0)

Testes 735 (0.4)

*Excluding 356 participants with smoking status absent and 528 participants with alcohol consumption status absent.
†For sex-specific cancers, this is the percentage of individuals of the relevant sex.
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95% CI 1.08–1.54, p=0.005) and when excluding outcomes that were self-reported only (70,734

remaining cases, OR 1.30, 95% CI 1.12–1.52, p=0.0007).

For site-specific cancers, the HMGCR gene region showed positive associations for five of the six

most common cancer sites (breast, prostate, melanoma, lung, and bladder; not for bowel), although

none of these results individually reached a conventional level of statistical significance. Similar

results were observed for analyses of site-specific cancers when excluding individuals with solely self-

reported outcomes from the analysis (Figure 2—figure supplement 7) and when individuals with a

cancer diagnosis other than the site-specific cancer under analysis were omitted from the analysis

rather than treated as a control (Figure 2—figure supplement 8); estimates were generally slightly

higher, but findings were unchanged. There was little evidence for associations in site-specific analy-

ses for other lipid-lowering drug targets.
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Figure 1. Power calculations for polygenic and gene-specific analyses, displaying the Mendelian randomization estimate that can be detected with 80%

power assuming a sample size of 367,703 individuals for site-specific cancers.

Carter et al. eLife 2020;9:e57191. DOI: https://doi.org/10.7554/eLife.57191 4 of 17

Research article Cell Biology Chromosomes and Gene Expression

https://doi.org/10.7554/eLife.57191


Overall

HMGCR

PCSK9

LDLR

NPC1L1

APOC3

LPL

1.32 (1.13−1.53), p<0.001

1.03 (0.92−1.14), p=0.657

0.99 (0.92−1.07), p=0.857

0.87 (0.73−1.04), p=0.130

1.08 (0.98−1.19), p=0.145

1.03 (0.95−1.13), p=0.453

0.7 0.8 0.9 1.0 1.1 1.2 1.4 1.6

Disease

Overall

Breast

Prostate

Lung

Bowel

Melanoma

Non−Hodgkin’s Lymphoma

Kidney

Head/neck

Brain

Bladder

Pancreas

Uterus

Leukaemia

Oesophagus

Ovaries

Gastric

Liver

Myeloma

Thyroid

Biliary

Cervix

Testes

1.32 (1.13− 1.53), p<0.001

1.19 (0.87− 1.64), p=0.275

1.26 (0.83− 1.92), p=0.276

1.16 (0.59− 2.27), p=0.675

0.95 (0.58− 1.54), p=0.825

1.59 (0.95− 2.67), p=0.078

0.84 (0.40− 1.78), p=0.653

0.74 (0.28− 2.00), p=0.554

0.77 (0.31− 1.88), p=0.562

3.19 (0.91−11.24), p=0.071

1.89 (0.93− 3.84), p=0.078

0.84 (0.31− 2.30), p=0.735

1.14 (0.50− 2.59), p=0.753

0.44 (0.17− 1.15), p=0.095

1.25 (0.36− 4.30), p=0.726

1.20 (0.48− 3.01), p=0.703

1.43 (0.38− 5.38), p=0.594

0.32 (0.04− 2.36), p=0.265

2.83 (0.70−11.45), p=0.146

1.83 (0.29−11.62), p=0.521

2.92 (0.47−18.07), p=0.249

1.60 (0.70− 3.62), p=0.264

1.37 (0.36− 5.16), p=0.641

0.2 0.3 0.5 0.8 1.0 1.2 1.6 2.0 3.0 4.0 5.0

Figure 2. Gene-specific Mendelian randomization estimates (odds ratio with 95% confidence interval per one

standard deviation increase in lipid fraction) for variants in gene regions representing targets of lipid-lowering

treatments. Estimates are scaled to a one standard deviation increase in LDL-cholesterol for the HMGCR, PCSK9,

LDLR, and NPC1L1 regions, and a one standard deviation increase in triglycerides for the APOC3 and LPL regions.

A: associations with overall cancer for each gene region in turn. B: associations with site-specific cancers for

variants in the HMGCR gene region.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Gene-specific Mendelian randomization estimates (odds ratio with 95% confidence interval

per one standard deviation increase in LDL-cholesterol) for variants in the PCSK9 gene region.

Figure supplement 2. Gene-specific Mendelian randomization estimates (odds ratio with95%confidence interval

per one standard deviation increase in LDL-cholesterol) for variants in theLDLRgene region.

Figure supplement 3. Gene-specific Mendelian randomization estimates (odds ratio with 95% confidence interval

per one standard deviation increase in LDL-cholesterol) for variants in theNPC1L1gene region.

Figure supplement 4. Gene-specific Mendelian randomization estimates (odds ratio with 95% confidence interval

per one standard deviation increase in LDL-cholesterol) for variants in theAPOC3gene region.

Figure 2 continued on next page
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Polygenic analyses for all lipid-related variants
Polygenic Mendelian randomization estimates are displayed in Figure 3 for HDL-cholesterol, LDL-

cholesterol, and triglycerides (see also Supplementary file 1), and Figure 4 for total cholesterol. For

overall cancer, the OR per one standard deviation increase in genetically-predicted levels of the risk

factor was 1.01 (95% CI 0.98–1.05, p=0.50) for LDL-cholesterol, 0.99 (95% CI 0.95–1.03, p=0.54) for

HDL-cholesterol, 1.00 (95% CI 0.95–1.05, p=0.85) for triglycerides, and 1.01 (95% CI 0.98–1.05;

p=0.57) for total cholesterol. Results for the lipid subfractions were similar using the multivariable

MR-Egger method (Supplementary file 1). Similar results were observed when omitting self-

reported outcomes from the analysis (Supplementary file 1).

For site-specific cancers, there were positive associations between risk of bowel cancer and

genetically predicted levels of total cholesterol (OR 1.18, 95% CI 1.06–1.32, p=0.002) and LDL-cho-

lesterol (OR 1.16, 95% CI 1.04–1.29, p=0.006). Compared to primary analyses, results were attenu-

ated in robust methods (Supplementary file 1). While these robust methods are univariable

Figure 2 continued

Figure supplement 5. Gene-specific Mendelian randomization estimates (odds ratio with 95% confidence interval

per one standard deviation increase in LDL-cholesterol) for variants in theLPLgene region.

Figure supplement 6. Genetic associations with LDL-cholesterol (standard deviation units) plotted against genetic

associations with overall cancer (log odds ratios) for six variants in the HMGCR gene region.

Figure supplement 7. Gene-specific Mendelian randomization estimates (odds ratio with 95% confidence interval

per one standard deviation increase in LDL-cholesterol) for variants in the HMGCR gene region excluding self-

reported outcomes.

Figure supplement 8. Gene-specific Mendelian randomization estimates (odds ratio with 95% confidence interval

per one standard deviation increase in LDL-cholesterol) for variants in the HMGCR gene region excluding those

with a cancer diagnosis other than site-specific cancer under analysis.
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Figure 3. Multivariable Mendelian randomization estimates for HDL-cholesterol, LDL-cholesterol, and triglycerides

(odds ratio with 95% confidence interval per one standard deviation increase in lipid fraction) from polygenic

analyses including all lipid-associated variants.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Multivariable Mendelian randomization estimates for HDL-cholesterol, LDL-cholesterol, and

triglycerides (odds ratio with 95% confidence interval per one standard deviation increase in lipid fraction) from

polygenic analyses including all lipid-associated variants excluding self-reported outcomes.

Figure supplement 2. Multivariable Mendelian randomization estimates for HDL-cholesterol, LDL-cholesterol, and

triglycerides (odds ratio with 95% confidence interval per one standard deviation increase in lipid fraction) from

polygenic analyses including all lipid-associated variants excluding those with a cancer diagnosis other than the

site-specific cancer under analysis.

Carter et al. eLife 2020;9:e57191. DOI: https://doi.org/10.7554/eLife.57191 6 of 17

Research article Cell Biology Chromosomes and Gene Expression

https://doi.org/10.7554/eLife.57191


analyses, evidence for a causal effect is most reliable when it is supported by multiple methods that

make different assumptions, which was not the case here. No other associations were statistically

significant at p<0.01. Again, similar results were observed when omitting self-reported outcomes

from the analysis (Figure 3—figure supplement 1 and Figure 4—figure supplement 1), and when

omitting individuals with a different cancer diagnosis from the analysis (Figure 3—figure supple-

ment 2 and Figure 4—figure supplement 2). The exception was for liver cancer, where estimates

for LDL-cholesterol (OR 0.52, 95% CI 0.30–0.0.88, p=0.016) and total cholesterol (OR 0.54, 95% CI

0.31–0.94, p=0.028) became stronger on the omission or exclusion of individuals with solely self-

reported outcomes. The numbers of events that were self-reported only for each outcome are

reported in Supplementary file 1. Heterogeneity I (Crosbie et al., 2013) statistics were around 40%

for the analysis of overall cancer, and generally lower for site-specific cancers (Supplementary file
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Figure 4. Univariable Mendelian randomization estimates for total cholesterol (odds ratio with 95% confidence interval per one standard deviation

increase in lipid fraction) from polygenic analyses including all lipid-associated variants.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Univariable Mendelian randomization estimates for total cholesterol (odds ratio with 95% confidence interval per one standard

deviation increase in lipid fraction) from polygenic analyses including all lipid-associated variants excluding self-reported outcomes.

Figure supplement 2. Univariable Mendelian randomization estimates for total cholesterol (odds ratio with 95% confidence interval per one standard

deviation increase in lipid fraction) from polygenic analyses including all lipid-associated variants excluding those with a cancer diagnosis other than the

site-specific cancer under analysis.

Figure supplement 3. Scatterplot to assess heterogeneity of genetic associations with total cholesterol (horizontal axis, standard deviation units)

against genetic associations with overall cancer (vertical axis, log odds ratios).
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1). The burden of heterogeneity was shared amongst several genetic variants; there were no striking

outliers and hence no specific variants strongly driving heterogeneity (see Figure 4—figure supple-

ment 3 for scatterplot of genetic associations with total cholesterol and overall cancer).

To address the possibility of null results arising due to low power, we combined data on gastroin-

testinal cancers (liver, stomach, bowel, esophagus, biliary tract, and pancreas). Estimates were some-

what stronger for LDL-cholesterol and total cholesterol compared to the analysis for overall cancer,

but did not reach a conventional level of statistical significance: LDL-cholesterol 1.05 (95% CI 0.97–

1.14, p=0.23), HDL-cholesterol 1.07 (95% CI 0.97–1.18, p=0.17), triglycerides 1.02 (95% CI 0.91–

1.15, p=0.70), and total cholesterol 1.07 (95% CI 0.99–1.16, p=0.10).

Discussion
Our comprehensive Mendelian randomization investigation shows a positive association between

overall cancer and variants in the HMGCR gene region which can be considered as proxies for statin

therapy. However, gene regions which can be considered as proxies for alternative lipid-lowering

therapies were not associated with cancer risk. Furthermore, there was little consistent evidence of

an association between genetically-predicted lipid fractions and cancer outcomes in polygenic analy-

ses either for overall cancer or for any site-specific cancer. Taken together, our findings predict that

statins lower the risk of cancer, and provide important evidence that this occurs through mechanisms

other than lipid lowering.

We found that genetic variants in the HMGCR region, serving as proxies for targets of statin ther-

apy, were associated with a 26% decrease in risk of overall cancer per standard deviation (around 39

mg/dL or 1.0 mmol/L) reduction in genetically-predicted LDL-cholesterol. Our result replicates pro-

tective associations previously observed for prostate cancer (PRACTICAL consortium et al., 2016),

colorectal cancer (Rodriguez-Broadbent et al., 2017), breast cancer (Orho-Melander et al., 2018;

Nowak and Ärnlöv, 2018), and ovarian cancer (Yarmolinsky et al., 2020), although with a stronger

weight of statistical evidence due to the additional number of cases analyzed here. For coronary

artery disease, the short-term impact of statins in trials is around one-third of the genetic estimate,

which represents the impact of lifelong reduced levels of LDL-cholesterol (Ference et al., 2012).

Under the assumption that even if LDL-cholesterol may not be the relevant causal risk factor, it is a

relevant prognostic factor for assessing the degree of HMGCR inhibition, this suggests that any

reduction in cancer risk from statins in practice is likely to be modest. Mechanistically, cardiovascular

risk reduction by statins is predominantly due to cholesterol lowering (Liao and Laufs, 2005),

whereas we give evidence this is not the case for cancer.

While our results should be seen as tentative until trials have demonstrated benefit, associations

of HMGCR variants show broad concordance with statin therapy for many continuous phenotypes

(Würtz et al., 2016), and suggest that statins reduce the risk of coronary artery disease

(Ference et al., 2016), increase risk of type 2 diabetes (Lotta et al., 2016), and increase risk of intra-

cerebral hemorrhage (Sun et al., 2019; Allara et al., 2019a), as confirmed in clinical trials

(ASCOT investigators et al., 2003; DIAGRAM Consortium et al., 2015; Collins et al., 2016).

Genetic evidence pertaining to HMGCR has been proven to be a reliable guide for the performance

of statins in trials. Clinical trials are required to confirm our promising findings for primary prevention

of cancer risk.

The notion that statins could be used for chemoprevention is longstanding. Nobel Prize winners

Goldstein and Brown proposed that this occurs through non-lipid lowering mechanisms

(Goldstein and Brown, 1990). We provide evidence from human genetics to support this theory.

Our results suggest that with respect to genetically predicted HMGCR inhibition and cancer risk,

LDL-cholesterol is simply a biomarker of HMGCR inhibition that is accessible, but the true causal

pathway is likely via another molecule whose levels are correlated with its LDL-cholesterol lowering

effect. HMGCR catalyzes the rate-limiting step of the mevalonate pathway; a pathway with an arm

leading to the endpoint of cholesterol synthesis and another arm leading to isoprenoid synthesis.

Measuring levels of intra-cellular isoprenoids is challenging but these molecules are implicated in

cancer via their role as major post-translational modifiers of key oncogenic proteins (Mullen et al.,

2016). In particular, mevalonate and other isoprenoid metabolites are required for the prenylation

and functioning of the Ras and Rho GTPases, which are oncoproteins, and involved in important cel-

lular processes including apoptosis, phagocytosis, vascular trafficking, cell proliferation,
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transmigration, cytoskeleton organization, and recruitment of inflammatory cells. Statin inhibition of

these metabolites has demonstrated anti-oncological effects in vivo and in vitro (Yeganeh et al.,

2014) including the promotion of tumor cell death and apoptosis (Spampanato et al., 2012;

Ghosh-Choudhury et al., 2010; Parikh et al., 2010; Misirkic et al., 2012), inhibition of angiogenesis

(Park et al., 2008), and reduction of tumor cell invasion and metastasis (Wang et al., 2000;

Yang et al., 2013). Other potential statin-mediated mechanisms of tumor suppression include the

reduction of systemic inflammatory mediators like interleukin 1-beta and tumor necrosis factor

(Park et al., 2008; Bruegel et al., 2006), and epigenetic regulation through inhibiting HMGCR-

mediated deacetylation (Lin et al., 2008), which contributes to colorectal cancer in mouse models

(Pisanti et al., 2014). Thus, our findings based on large-scale human genetic data are consistent

with pre-clinical studies on statins in cancer which have repeatedly argued for a cholesterol indepen-

dent mechanism for statin effects on cancer.

We have here presented the first wide-angled Mendelian randomization analysis of lipid subtypes

for a range of site-specific cancers. We corroborate previous Mendelian randomization studies sug-

gesting no causal role of lipids in the development of pancreatic cancer (Carreras-Torres et al.,

2017a) and prostate cancer (PRACTICAL consortium et al., 2016). We also extend these findings

to show little convincing evidence for total cholesterol levels or lipid fractions as a risk factor for any

cancer type studied. However, it is plausible that lack of power or heterogeneity between cancer

types could have contributed to these null results as previous large Mendelian randomization studies

of the most common cancers (colorectal, lung, and breast) have shown significant associations with

LDL-cholesterol, including results in both directions. Although our associations did not achieve a

conventional level of statistical significance, we mirror the positive associations of genetically-pre-

dicted LDL-cholesterol and HDL-cholesterol with breast cancer (Nowak and Ärnlöv, 2018; Beeghly-

Fadiel et al., 2019) observed in the Breast Cancer Association Consortium which studied over

60,000 cases of cancer. However, we did not observe the negative association observed between

LDL-cholesterol and lung cancer found in a Mendelian randomization analysis of 29,266 cases,

though in the same study rare LDL-cholesterol variants showed the opposite association (Carreras-

Torres et al., 2017b). Of all the site-specific cancers studied, the present study only implicated dysli-

pidemia in driving bowel (i.e. colorectal) cancer with positive associations demonstrated for total

and LDL-cholesterol levels. These findings corroborate a previous Mendelian randomization study of

26,397 colorectal cancer patients (Cornish et al., 2020). Furthermore, in a smaller Mendelian ran-

domization study, genetically-predicted total cholesterol levels, but not LDL-cholesterol, were asso-

ciated with colorectal cancer risk (Rodriguez-Broadbent et al., 2017), and several previous meta-

analyses of observational studies have associated dyslipidemia with increased risk of colorectal ade-

noma (Passarelli and Newcomb, 2016) and cancer (Yao and Tian, 2015; Tian et al., 2015). How-

ever, the associations we found for colorectal cancer were attenuated in sensitivity analyses and

must therefore be interpreted with caution. Overall, there was little consistent evidence for total

cholesterol levels or lipid fractions as a risk factor for cancer, although this must be interpreted with

caution.

Our headline finding relates to overall cancer, which is a combination of different malignancies.

While they may have different underlying aetiologies, all cancers are known to share common under-

lying ‘hallmark’ molecular and cellular aberrations and there may thus be pathophysiologic relevance

in combining outcomes (Hanahan and Weinberg, 2011). Furthermore, analyses for overall cancer

are highly relevant from a public health perspective. In addition to the cardiovascular benefits of sta-

tins, any individual patient decision regarding whether to take them for primary cancer prevention is

likely to reflect the risk of all cancer types, not one particular subtype. Overall, clinical trials are

needed to confirm the protective effect of statins in the primary prevention of cancer and should

characterize the adverse risks of statins before they are advocated in clinical guidance. In particular,

any potential adverse effect of LDL-cholesterol lowering on lung cancer should be monitored,

despite the lack of replication for this finding in the present analysis.

Our investigation has many strengths, but also limitations. The large sample size of over 360,000

participants and the broad set of outcomes analyzed render this the most comprehensive Mendelian

randomization analysis of lipids and cancer outcomes conducted to date. However, the investigation

has a number of limitations. For many site-specific cancers, there were not enough outcome events

to obtain adequate power to rule out the possibility of moderate causal effects. This is particularly

relevant to analyses of gene-specific target regions for LDL-cholesterol, which were not adequately
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powered to detect small effect sizes. Conversely, the study of a large number of outcomes across

multiple risk factors as we have done is prone to type one errors, meaning that results are falsely

found to be significant. However, correction for multiple testing may lead to type two errors, mean-

ing that results are falsely judged to be inconclusive. We encourage readers to weigh the evidence

presented carefully rather than to reduce findings to a binary designation of ‘significant’ or ‘not sig-

nificant’. While there is evidence to support our assumption that genetic variants in relevant gene

regions can be used as proxies for pharmacological interventions, our findings should be considered

with caution until they have been replicated in clinical trials. Our investigation was able to compare

subgroups of the population with different lifelong average levels of lipid fractions, but the impact

of lowering a particular lipid fraction in practice is likely to differ from the genetic association, partic-

ularly quantitatively (Burgess et al., 2012). Combining cancer types to study overall cancer risk has

the aforementioned benefits and also results in the largest number of cases and so the greatest

power to detect a causal effect. However, this assumes a consistent effect between cancer types, so

there is potential for directional heterogeneity and a consequent reduction in power. Furthermore,

this combined endpoint is dependent on the characteristics of the analytic sample and the relative

prevalence of different cancer types. In particular, cancers with greater survival chances will be over-

represented in the case sample. Finally, analyses were conducted in UK-based participants of Euro-

pean ancestries. While it is recommended to have a well-mixed study population for Mendelian

randomization to ensure that genetic associations are not influenced by population stratification, it

means that results may not be generalizable to other ethnicities or nationalities.

In conclusion, our findings suggest that HMGCR inhibition may have a chemopreventive role in

cancer through non-lipid lowering properties and that this role may apply across cancer sites. The

efficacy of statins for cancer prevention must be urgently evaluated.

Materials and methods

Study design and data sources
We performed two-sample Mendelian randomization analyses, taking genetic associations with risk

factors (i.e. serum lipid levels) from one dataset, and genetic associations with cancer outcomes

from an independent dataset, as performed previously for cardiovascular diseases (Allara et al.,

2019b).

We obtained genetic associations with serum lipid concentrations (total cholesterol, LDL-choles-

terol, HDL-cholesterol, and triglycerides) from the Global Lipids Genetic Consortium (GLGC) on up

to 188,577 individuals of European ancestry (Global Lipids Genetics Consortium et al., 2013).

Genetic associations were estimated with adjustment for age, sex, and genomic principal compo-

nents within each participating study after inverse rank quantile normalization of lipid concentrations,

and then meta-analyzed across studies.

We estimated genetic associations with cancer outcomes on 367,703 unrelated individuals of

European ancestry from the UK Biobank, a population-based cohort recruited between

2006 and 2010 at 22 assessment centers throughout the UK and followed-up until 31st March 2017

or their date of death (recorded until 14th February 2018; Sudlow et al., 2015). We defined cancer

outcomes for overall cancer and for the 22 most common site-specific cancers in the UK

(Supplementary file 1). Outcomes were based on electronic health records, hospital episode statis-

tics data, national cancer registry data, and death certification data, which were all coded according

to ICD-9 and ICD-10 diagnoses. Further cancer outcomes were captured by self-reported informa-

tion validated by an interview with a trained nurse and from cancer histology data in the national

cancer registry. To obtain genetic association estimates for each outcome, we conducted logistic

regression with adjustment for age, sex, and 10 genomic principal components using the snptest

software program. For sex-specific cancers (breast, uterus, and cervix for women; prostate and tes-

tes for men), analyses were restricted to individuals of the relevant sex. For overall cancer, each indi-

vidual could contribute to the analysis as a case once. For site-specific cancers, an individual could

contribute to the analysis of multiple cancers. Controls were defined as individuals without the dis-

ease outcome under consideration. Hence an individual with one cancer could be a control for analy-

ses of another cancer. We also performed sensitivity analyses excluding individuals with solely self-

reported cancer outcomes from the analyses, and for site-specific cancers, excluding individuals with
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a cancer diagnosis other than the site-specific cancer under analysis (so that controls were only those

without any cancer diagnosis).

Gene-specific analyses for HMGCR and other drug proxy variants
We performed targeted analyses for variants in the HMGCR gene region that can be considered as

proxies for statin therapy. Additionally, we conducted separate analyses for the PCSK9, LDLR,

NPC1L1, APOC3, and LPL gene regions, mimicking other lipid-altering therapies

(Supplementary file 1). These regions were chosen as they contain variants that explain enough vari-

ance in lipids to perform adequately powered analyses. Variants in each gene region explained 0.4%

(HMGCR), 1.2% (PCSK9), 1.0% (LDLR), 0.2% (NPC1L1), 0.1% (APOC3), and <0.1% (LPL) of the vari-

ance in LDL-cholesterol. The APOC3 and LPL variants also explained 1.0% and 0.9% of the variance

in triglycerides, respectively. Variants were chosen based on their associations with the relevant lipid

trait from a conditional analysis in the GLGC (Supplementary methods). We performed the inverse-

variance weighted method accounting for correlations between the variants using generalized

weighted linear regression (Burgess et al., 2016). This was implemented using the ‘correl’ option in

the MendelianRandomization package (Yavorska and Burgess, 2017). Estimates for the HMGCR,

PCSK9, LDLR, and NPC1L1 gene regions are scaled to a one standard deviation increase in LDL-cho-

lesterol, whereas estimates for the APOC3 and LPL gene regions are scaled to a one standard devia-

tion increase in triglycerides.

Selection of variants for gene-specific analyses
Variants for the gene-specific analyses were selected to match the choice in a parallel analysis of car-

diovascular diseases (Allara et al., 2019a). Variants in the HMGCR and PCSK9 regions were origi-

nally selected by Ference et al., 2016. Variants in the LPL region were originally selected by

Lotta et al., 2016. Variants in the NPC1L1 region were originally selected by Ference et al., 2015.

Variants in the LDLR and APOC3 regions were selected by Do et al., 2013. All variants were chosen

based on their associations with lipid levels in conditional analyses using data from the GLGC. Var-

iants are all conditionally associated with the relevant lipid trait (either LDL-cholesterol or triglycer-

ides) and not strongly correlated (r2 <0.4). The variants are listed in Supplementary file 1.

Polygenic analyses for all lipid-related variants
We carried out polygenic analyses based on 184 genetic variants previously demonstrated to be

associated with at least one of total cholesterol, LDL-cholesterol, HDL-cholesterol, or triglycerides at

a genome-wide level of significance (p < 5 � 10�8) in the GLGC (Do et al., 2013). These variants

explained 15.0% of the variance in total cholesterol, 14.6% in LDL-cholesterol, 13.7% in HDL-choles-

terol, and 11.7% in triglycerides in the GLGC. Variants were reported as uncorrelated in the original

publication by the GLGC, but some pairs of correlated variants remained in the analysis.

To obtain the associations of genetically-predicted values of LDL-cholesterol, HDL-cholesterol,

and triglycerides with each cancer outcome while accounting for measured genetic pleiotropy via

each other, we performed multivariable Mendelian randomization analyses using the inverse-vari-

ance weighted method (Sanderson et al., 2019). For total cholesterol, we performed univariable

Mendelian randomization analyses using the inverse-variance weighted method (Burgess et al.,

2013). The analysis for total cholesterol was conducted both because cancer risk may be influenced

by total cholesterol rather than any particular lipid subfraction and to mitigate against the loss of

power from adjustment for the various lipid subfractions in the multivariable analysis. To account for

between-variant heterogeneity, we used random-effects models in all analyses. Heterogeneity

between the estimates for different variants was quantified by Cochran’s Q statistic and Higgins’ I

(Crosbie et al., 2013) statistic. For polygenic analyses that provided evidence of a causal effect, we

additionally performed robust methods for Mendelian randomization, in particular the MR-Egger

(Bowden et al., 2015) and weighted median methods (Bowden et al., 2016). All estimates are

expressed per one standard deviation increase in the corresponding lipid fraction (in the GLGC, one

standard deviation was 45.6 mg/dL for total cholesterol, 39.0 mg/dL for LDL-cholesterol, 15.8 mg/

dL for HDL-cholesterol, and 90.5 mg/dL for triglycerides). Correlation between variants was

accounted for in the inverse-variance weighted and MR-Egger methods; for the weighted median

analysis, one of each pair of correlated variants was dropped from the analysis.

Carter et al. eLife 2020;9:e57191. DOI: https://doi.org/10.7554/eLife.57191 11 of 17

Research article Cell Biology Chromosomes and Gene Expression

https://doi.org/10.7554/eLife.57191


As power calculators have not been developed for multivariable Mendelian randomization analy-

ses, we performed power calculations for polygenic analyses based on univariable Mendelian ran-

domization for each lipid fraction in turn, and for gene-specific analyses for each gene region in turn

(Burgess, 2014). We carried out all analyses using R (version 3.4.4) unless otherwise stated. All sta-

tistical tests and p-values presented are two sided.
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Mäntyselkä P, Kähönen M, Lehtimäki T, Sattar N, Hingorani AD, Casas JP, Salomaa V, Kivimäki M, Järvelin MR,
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