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A B S T R A C T

Background: Tumour necrosis factor (TNF) inhibitors are used in the treatment of certain autoimmune dis-
eases but given the role of TNF in tumour biology and atherosclerosis, such therapies may influence the risk
of cancer and cardiovascular disease. We conducted a Mendelian randomization study to explore whether
TNF levels are causally related to cardiovascular disease and cancer.
Methods: Single-nucleotide polymorphisms associated with TNF levels at genome-wide significance were
identified from a genome-wide association study of 30 912 European-ancestry individuals. Three TNF-associ-
ated single-nucleotide polymorphisms associated with higher risk of autoimmune diseases were used as
instrumental variables. Summary-level data for 14 cardiovascular diseases, overall cancer and 14 site-specific
cancers were obtained from UK Biobank and consortia.
Findings: Genetically-predicted TNF levels were positively associated with coronary artery disease (odds ratio
(OR) 2.25; 95% confidence interval (CI) 1.50, 3.37) and ischaemic stroke (OR 2.27; 95% CI 1.50, 3.43), and
inversely associated with overall cancer (OR 0.54; 95% CI 0.42, 0.69), breast cancer (OR 0.51; 95% CI 0.39,
0.67), and colorectal cancer (OR 0.20; 95% CI 0.09, 0.45). There were suggestive associations of TNF with
venous thromboembolism (OR 2.18; 95% CI 1.32, 3.59), endometrial cancer (OR 0.25; 95% CI 0.07, 0.94), and
lung cancer (OR 0.45; 95% CI 0.21, 0.94).
Interpretation: This study found evidence of causal associations of increased TNF levels with higher risk of
common cardiovascular diseases and lower risk of overall and certain cancers.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license.
(http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

Tumour necrosis factor (TNF) is a pro-inflammatory cytokine
secreted primarily by immune cells. It is involved in a broad range of
both homoeostatic and pathophysiological processes, such as immu-
nity, inflammation, cell proliferation, apoptosis and lipid metabolism
[1-3]. As such, anti-TNF agents have become cornerstone in the treat-
ment of autoimmune inflammatory conditions such as rheumatoid
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Research in context

Evidence before this study

Tumour necrosis factor (TNF) is a pro-inflammatory cytokine
secreted primarily by immune cells. It is involved in a broad
range of both homoeostatic and pathophysiological processes,
such as immunity, inflammation, cell proliferation, apoptosis
and lipid metabolism. As such, anti-TNF agents have become
cornerstone in the treatment of autoimmune inflammatory
conditions such as rheumatoid arthritis and inflammatory
bowel disease. However, the potential therapeutic, or even del-
eterious, effects of targeting TNF in other inflammatory condi-
tions, such as cardiovascular disease and cancer remains
equivocal. Mendelian randomization (MR) is an epidemiologi-
cal approach using genetic variants as instrumental variables
for an exposure to strengthen the causal inference in an expo-
sure-outcome association by reducing residual confounding
and reverse causality.

Added value of this study

In the present MR study, we provided the first causal evidence
of positive associations of TNF levels with atherothrombotic
disease (coronary artery disease and ischaemic stroke) and
venous thromboembolism. Furthermore, we revealed inverse
associations of TNF levels with risk of overall cancer and several
site-specific cancers (colorectal, breast, endometrial, and lung
cancers). We confirmed that higher TNF levels were strongly
associated with established TNF-driven diseases (rheumatoid
arthritis and inflammatory bowel disease) which added strong
support to the validity of the genetic instrument used and the
reliability of our findings.

Implications of the all the available evidence

This study reveals evidence of causal associations of increased
TNF levels with higher risk of common cardiovascular diseases
and lower risk of overall and certain cancers. These results may
inform decisions concerning potential benefits and risks of TNF
inhibitor therapy. In detail, clinicians need to assess potential
increased cancer risk derived from anti-TNF therapy usage
especially amongst individuals with inherited or acquired high
risk of cancer, and in addition, may use anti-TNF medicine as a
potential prevention approach for people with excessive car-
diovascular risk and a potential treatment strategy for patients
with impaired cardiovascular condition. The study also indi-
cates that randomized controlled trials are warranted to verify
our findings and comprehensively evaluate the benefits and
risks of anti-TNF therapy in populations with different health
conditions.
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arthritis and inflammatory bowel disease. However, the potential
therapeutic, or even deleterious, effects of targeting TNF in other
inflammatory conditions, such as cardiovascular disease (CVD) and
cancer remains equivocal.

Atherosclerosis is a chronic inflammatory disease of the arterial
wall, driven by immune cells and cytokines at all stages, and, TNF-
deficient mice have reduced plaque size [4]. This is likely of impor-
tance in humans as TNF levels post-myocardial infarction are a strong
predictor of recurrent events [5]. Furthermore, multiple observa-
tional studies have shown that TNF inhibition reduces atherosclerosis
and cardiovascular events when administered to patients with rheu-
matoid arthritis [6]. Whether this benefit is also conferred in the gen-
eral population, rather than patients suffering from conditions
characterized by enhanced TNF activity, is poorly understood. Simi-
larly, the role of TNF in heart failure remains equivocal. Although epi-
demiologically, TNF levels are predictive of heart failure mortality [7],
a clinical trial in heart failure patients observed a higher hospitaliza-
tion rate in the group receiving 10 mg/kg infliximab (anti-TNF) com-
pared with the placebo group [8]. The potentially causal role of TNF
in heart failure, atherosclerosis in a range of vascular beds and other
cardiovascular diseases therefore need to be investigated.

Cancer is characterized by uncontrolled cell proliferation and sur-
vival. As a pro-inflammatory cytokine, TNF can promote all stages of
carcinogenesis including survival, angiogenesis, and metastasis. TNF
levels are raised in multiple cancer types, are reduced by chemother-
apy and the reduction is associated with patient outcomes [9]. TNF
inhibition may therefore be a potential cancer therapy. However,
there have been multiple reports of increased risk of certain malig-
nancies such as squamous cell cancer [10] in patients treated with
anti-TNF agents. This may relate to the paradoxical tumour-suppres-
sive effects of TNF, such as cytotoxicity. Thus, TNF and anti-TNF thera-
pies may both have carcinogenic benefits and risks in different cancer
types and the causal role of the cytokine in the development of a
wide range of site-specific cancers warrants further evaluation.

Utilizing genetic variants as instrumental variables for an expo-
sure (e.g., TNF levels), Mendelian randomization (MR) can improve
the causal inference of an exposure-outcome association [11]. It mini-
mizes potential methodological limitations, such as confounding and
reverse causality. The rationale for diminished bias in MR studies is
that genetic variants are randomly assorted and fixed at conception
and therefore largely independent of confounders and cannot be
modified by disease development [11].

Here, we aimed to evaluate the CVDs and cancers that are causally
associated with TNF levels and which could be targeted with TNF-
modifying therapies. We conducted a two-sample Mendelian ran-
domization study to explore the associations of genetically predicted
TNF levels with risk of 14 CVDs, overall cancer, and 14 site-specific
cancers. To validate the instrumental variables, we assessed whether
genetically predicted TNF levels were associated with higher risk of
rheumatoid arthritis and inflammatory bowel disease.

2. Methods

2.1. Study design

This is a two-sample MR study design based on summary-level
data. An MR analysis depends on the assumptions that the genetic
variants: [1] are strongly associated with the exposure (the relevance
assumption); [2] are not associated with confounders of the expo-
sure-outcome relationship (the independence assumption); and [3]
have an effect on the outcome through the exposure only and not
through any other causal pathway (the exclusion restriction assump-
tion) [11]. This MR study has been approved by the Swedish Ethical
Review Authority.

2.2. Instrumental variable selection and outcome sources

A meta-analysis of genome-wide association studies (GWASs) of
25 cohorts encompassing 30 912 European-descent individuals iden-
tified four single-nucleotide polymorphisms (SNPs) associated with
TNF levels at genome-wide significance (P<5 £ 10�8) (Table 1) [12].
To ensure that the relevance assumption is likely to be satisfied, we
used rheumatoid arthritis [13] and inflammatory bowel disease [14]
as positive controls to select SNPs (Supplementary Table 1). A
genetic instrument containing rs10744774, rs3184504 and
rs7182229 was associated with an expected increased odds of rheu-
matoid arthritis and inflammatory bowel disease. The TNF-raising
allele of rs2857602 was associated with lower odds of these autoim-
mune diseases and was regarded as an unreliable instrumental



Table 1
Detailed information of instrumental variables for TNF levels.

rsID Chr Position (hg19) Nearby gene EA NEA EAF Beta SE P Included in main analysis
rs2857602 6 31,533,378 LTA G A 0.38 0.032 0.006 3.30 £ 10�12 No
rs10744774 12 112,090,022 BRAP A C 0.83 0.044 0.007 6.94 £ 10�11 Yes
rs3184504 12 111,884,608 SH2B3 T C 0.48 0.030 0.005 3.96 £ 10�10 Yes
rs7182229 15 58,765,183 LIPC T G 0.11 0.050 0.009 1.07 £ 10�9 Yes

Chr indicates chromosome; EA; effect allele; EAF, effect allele frequency; NEA, non-effect allele; SE, standard error; TNF, tumour necrosis factor.
Rs2857602 was not included in the main analysis since the TNF-increasing allele was associated with lower odds of rheumatoid arthritis and inflamma-
tory bowel disease.
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variable for TNF. We therefore used three SNPs (rs10744774,
rs3184504 and rs7182229) as instrumental variables for TNF levels in
the primary analysis; all four SNPs were used in a supplementary
analysis. The two SNPs on chromosome 12 (rs10744774 and
rs3184504) were in modest linkage disequilibrium (r2 = 0.18) based
on 1000 G reference panel. The genotype associations with TNF levels
were adjusted for age2, sex, body mass index, and study-specific vari-
ables such as genetic principal components and relatedness [12].

Fourteen CVDs, overall cancer, and 14 site-specific cancers were
included as outcomes in this MR study (Table 2). Summary-level data
for outcomes were obtained from UK Biobank [15] and genetic con-
sortia [16-22]. Rs2857602 was not available in the consortia datasets
of coronary artery disease and stroke and was replaced by a proxy
(rs2844484, r2=1). From UK Biobank, we included CVDs and cancers
with at least 1000 cases to ensure sufficient statistical power to
detect moderate to strong associations. The SNP-outcome associa-
tions in UK Biobank and most consortia were adjusted for age, sex,
and genetic principal components. Detailed information of included
outcomes is displayed in Table 2.

2.3. Pleiotropy assessment

To evaluate whether the exclusion restriction assumption is likely
to hold, possible pleiotropic associations of the instrumental varia-
bles with other phenotypes were assessed by searching a database of
human genotype-phenotype associations (PhenoScanner V2) (http://
www.phenoscanner.medschl.cam.ac.uk/). One or more of the SNPs
related to TNF were associated with autoimmune diseases (coeliac
disease, rheumatoid arthritis, and type 1 diabetes), various immune
and blood cells, haemoglobin levels, hypothyroidism, diastolic blood
pressure, total and low-density lipoprotein cholesterol, and height
(Supplementary Table 2).

2.4. Statistical analysis

The inverse-variance weighted method with adjustment for correla-
tions amongst the SNPs [23] was used to analyse the associations of TNF
with CVD and cancer outcomes in themain analysis. A matrix of correla-
tions amongst used SNPs was added into the traditional inverse-vari-
ance weighted model, thereby diminishing the effects of linkage
disequilibrium [23]. All odds ratios (ORs) and 95% confidence intervals
(CIs) of the outcomes were expressed per one unit increase in natural
log of TNF (pg/ml). We calculated the statistical power using a web-tool
and results of the power analyses are presented in Supplementary
Table 3 [24]. To account for multiple testing, we deemed associations
with p values below 1.7 £ 10�3 (where p = 0.05/29 (29 outcomes)) as
strong evidence of causal associations. Associations with p values below
0.05 but above 1.7£ 10�3 were treated as suggestive evidence of associ-
ations. All analyses were two-sided and performed using TwoSam-
pleMR andMendelianRandomization packages in R 3.6.0.

2.5. Role of funders

The funders had no role in study design, data collection, interpre-
tation, or the decision to submit the work for publication.
3. Results

The associations of TNF levels instrumented by three SNPs with
the CVD and cancer outcomes are displayed in Fig. 1 and Fig. 2.
Genetically higher TNF levels were associated with higher odds of
coronary artery disease and ischaemic stroke and lower odds of over-
all, colorectal, and breast cancer. For one unit increase in natural log-
transformed TNF levels, the ORs were 2.25 (95% CI, 1.50, 3.37) for cor-
onary artery disease, 2.27 (95% CI, 1.50, 3.43) for ischaemic stroke,
0.54 (95% CI, 0.42, 0.96) for overall cancer, 0.51 (95% CI, 0.39, 0.67) for
breast cancer, and 0.20 (95% CI, 0.09, 0.45) for colorectal cancer.
Results for coronary artery disease and breast cancer were similar in
UK Biobank and consortia. There was weak evidence of association
between TNF levels and ischaemic stroke in UK Biobank. Genetically
predicted TNF levels showed a suggestive positive association with
risk of venous thromboembolism (OR 2.18, 95% CI 1.32, 3.59) and
inverse associations with risk of endometrial cancer (OR 0.25, 95% CI
0.07, 0.94) and lung cancer (OR 0.45, 95% CI 0.21, 0.94). Genetically
predicted TNF levels were not associated with the other studied car-
diovascular diseases and site-specific cancers in the main analysis. In
the supplementary analysis, using four SNPs, there was some evi-
dence of inverse associations of genetically-predicted TNF levels with
intracerebral haemorrhage (OR, 0.19; 95% CI, 0.04, 0.92), colorectal
cancer (OR, 0.23; 95% CI, 0.09, 0.60), and ovarian cancer (OR, 0.23;
95% CI, 0.06, 0.91) (Supplementary figure 1).

4. Discussion

In the present MR study, we provided the first causal evidence of
positive associations of TNF levels with atherothrombotic disease
(coronary artery disease and ischaemic stroke) and venous thrombo-
embolism. Furthermore, we revealed inverse associations of TNF lev-
els with risk of overall cancer and several site-specific cancers
(colorectal, breast, endometrial, and lung cancers). We confirmed
that higher TNF levels were strongly associated with established
TNF-driven diseases (rheumatoid arthritis and inflammatory bowel
disease) which added strong support to the validity of the genetic
instrument used and the reliability of our findings.

4.1. Primary findings in cardiovascular disease

A correlation between a TNF-related SNP and CVD was found in a
study with 587 patients, which showed an association between the
TNFA rs1800629 gene variant and cardiovascular complications in
patients with rheumatoid arthritis albeit confined within individuals
carrying the rheumatoid shared epitope [25]. The present study com-
prehensively examined associations of TNF levels with most common
CVDs amongst a general population and revealed positive associa-
tions of TNF levels with atherothrombotic disease and venous throm-
boembolism.

Atherothrombotic disease is a chronic inflammatory disease of the
arterial wall and has been shown to be TNF-driven. A possible posi-
tive association of TNF with ischaemic stroke [26] has been reported.
In addition, TNF inhibition in patients with rheumatoid arthritis
improves important correlates of CVD such as carotid intimal-medial
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Table 2
Characteristics of included studies or consortia of inflammatory diseases, cardiovascular diseases, and cancers.

Outcome Source Cases Controls Sample size Population
Inflammatory disease
Rheumatoid arthritis GARNET consortium 29 880 73 758 103 638 Mix
Inflammatory bowel disease UK IBD consortium 25 042* 34 915 59 957 European

Cardiovascular disease
Cerebrovascular disease
Overall stroke MEGASTROKE consortium 67 162 454 450 521 612 Mix
Overall stroke UKBB 9652 357 991 367 643 European
Any ischaemic stroke MEGASTROKE consortium 60 341 NA NA Mix
Any ischaemic stroke UKBB 3554 364 089 367 643 European
Large artery stroke MEGASTROKE consortium 6688 146 392 153 080 Mix
Small vessel stroke MEGASTROKE consortium 11 710 192 662 204 372 Mix
Cardioembolic stroke MEGASTROKE consortium 9006 204 570 213 576 Mix
Intracerebral haemorrhage UKBB 1064 366 579 367 643 European
Subarachnoid haemorrhage UKBB 1084 366 559 367 643 European
Heart and valvular disease
Coronary artery disease CARDIoGRAMplusC4D consortium 60 801 123 504 184 305 Mix
Coronary artery disease UKBB 24 531 343 112 367 643 European
Heart failure UKBB 7382 387 652 395 034 European
Atrial fibrillation AFGen 65 446 522 000 587 446 Mix
Atrial fibrillation UKBB 16 945 350 698 367 643 European
Abdominal aortic aneurysm UKBB 1094 366 549 367 643 European
Aortic valve stenosis UKBB 2244 365 399 367 643 European
Vessel disease
Peripheral artery disease UKBB 3415 364 228 367 643 European
Venous thromboembolism UKBB 15 602 352 041 367 643 European

Cancer
Bladder cancer UKBB 2588 365 055 367 643 European
Breast cancer BCAC 122 977 105 974 228 951 Mix
Breast cancer ER- BCAC 21 468 NA NA Mix
Breast cancer ER+ BCAC 69 501 NA NA Mix
Breast cancer UKBB 13 666 353 977 198 838 European
Cervical cancer UKBB 1928 365 715 198 838 European
Colorectal cancer UKBB 5486 362 157 367 643 European
Endometrial cancer UKBB 1520 366 123 198 838 European
Head-neck cancer UKBB 1615 366 028 367 643 European
Kidney cancer UKBB 1310 366 333 367 643 European
Leukaemia UKBB 1403 366 240 367 643 European
Lung cancer ILCCO 11 348 15,861 27 209 European
Melanoma UKBB 4869 362 774 367 643 European
Non-Hodgkin's lymphoma UKBB 2296 365 347 367 643 European
Ovarian cancer UKBB 1520 366 123 198 838 European
Ovarian cancer OCAC 22 406 40 941 63 347 Mix
Overall cancer UKBB 75 037 292 606 367 643 European
Pancreatic cancer UKBB 1264 366 379 367 643 European
Prostate cancer PRACTICAL 79 194 61 112 140 306 European
Prostate cancer UKBB 7872 359 771 168 748 European

AFGen indicates Atrial Fibrillation Consortium; BCAC, Breast Cancer Association Consortium; CARDIoGRAMplusC4D, Coronary
ARtery DIsease Genome wide Replication and Meta-analysis plus The Coronary Artery Disease Genetics; GARNET, Genetics and
Allied research in Rheumatic diseases Networking; ILCCO, The International Lung Cancer Consortium; NA, not available; OCAC,
The Ovarian Cancer Association Consortium; PRACTICAL, The Prostate Cancer Association Group to Investigate Cancer Associated
Alterations in the Genome consortium; UKBB, UK Biobank; UK IBD consortium, UK Inflammatory Bowel Disease Genetics
Consortium.
* Includes Crohn's disease and ulcerative colitis.
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thickness and aortic stiffness [27], and has been shown to reduce the
risk of overall cardiovascular events [28], myocardial infarction and
stroke in rheumatoid arthritis patients [6]. However, the putative
role of TNF in driving this may differ in the general population and
patients with inflammatory arthropathies subject to systemic inflam-
mation, medications known to drive CVD such as nonsteroidal anti-
inflammatory drugs and steroids and more abundant traditional risk
factors. Our findings support previous research for TNF driving athe-
rothrombosis and extend it to the general population. Importantly,
targeting inflammation using the biological therapy has previously
been successful. Canakinumab, which neutralizes IL1B, reduced
recurrent cardiovascular outcomes in patients with a high inflamma-
tory burden in a clinical trial even though the results of this trial
were substantially lower than expected [29]. The underlying mecha-
nism for TNF-driven atherothrombosis could be via a variety of pro-
posed mechanisms, including favourable effects on circul1ating
lipids, insulin resistance, endothelial dysfunction, leucocyte
recruitment, oxidative stress, vasodilation or coagulation [30]. The
observed positive association of genetically-predicted TNF levels
with venous thromboembolism is not found in traditional observa-
tional studies showing no association [31,32], but the precision was
low in those studies. However, a recent longitudinal cohort study
based on the German register RABBIT revealed that anti-TNF agents
decreased the risk of serious venous thromboembolism events com-
pared to csDMARDs medicine [33], which is in line with our finding.
Venous thromboembolism differs in pathology from arterial, which is
driven by the atherosclerotic process. Even though inflammation and
the innate immune system have an important role in venous throm-
boembolism, the link between TNF and thrombogenesis remains
unclear. On one hand, TNF has been proposed to promote a pro-coag-
ulant state. On the other hand, a recent study in mice found an essen-
tial role in the resolution of venous thrombus through the TNF
receptor (TNF-Rp55) in intrathrombotic macrophages with no effect
on coagulation [34].



Fig. 1. Overview of this MR study, including genetic instrument and data sources used, results, and conclusions. AFGen indicates Atrial Fibrillation Consortium; BCAC, Breast Cancer
Association Consortium; Ca, cancer; CAD, coronary artery disease; CARDIoGRAMplusC4D, Coronary ARtery DIsease Genome wide Replication and Meta-analysis plus The Coronary
Artery Disease Genetics; IBD, inflammatory bowel disease; ILCCO, International Lung Cancer Consortium; GWAS, genome-wide association study; MR, Mendelian randomization;
OCAC, The Ovarian Cancer Association Consortium; PRACTICAL, Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome consortium; RA, rheu-
matoid arthritis; SNPs, single-nucleotide polymorphisms; TNF, tumour necrosis factor; VTE, venous thromboembolism.
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4.2. Primary findings in cancer

With regard to overall cancer risk, randomized controlled trials
and observational studies assessing the effect of TNF inhibitor treat-
ment, primarily in rheumatoid arthritis and inflammatory bowel dis-
ease patients, have yielded inconclusive results [35,36]. This may
relate to the complexities of such studies with rare cancer outcomes,
short follow-up, high patient exclusions and the potential of reverse
causation with the neoplastic process itself affecting levels of inflam-
matory mediators. Furthermore, there may be confounding from the
underlying inflammatory disease or concomitant treatments such as
non-steroidal anti-inflammatory drugs or disease-modifying anti-
rheumatic drugs. Both a study with a long 10-year follow up [36],
and a large meta-analysis of 6 randomized controlled trials [37] dem-
onstrated it, although the latter themselves have been reported to
increase cancer risk themselves [37]. The present MR study found an
inverse association between TNF levels and overall cancer in UK Bio-
bank, but we cannot exclude that the observed association might be
driven by several site-specific cancers contributing a large proportion
of cancer cases, such as breast cancer (18%) and colorectal cancer
(7%). In any case, our MR study, which avoids many of the aforemen-
tioned limitations of previous studies, provides evidence that anti-
TNF therapies may promote the development of some cancer types.

Previous studies of TNF levels in relation to risk of colorectal can-
cer are inconsistent. Carcinogenic effects have been suggested by a
clinical study of 30 colorectal cancer patients in which the TNF gene
was significantly overexpressed in cancerous tissue compared with
adjacent normal colorectal tissue [38]. Although this does not provide
causal evidence, in genetic studies polymorphisms of TNF have been
associated with colorectal cancer risk [39]. Conversely, register-based
studies have detected both no difference [36], and, an increased colo-
rectal cancer risk [40], compared to untreated patients. Epidemiologi-
cal data on TNF levels in relation to risk of breast, lung and
endometrial cancer are also conflicting and scarce. A genetic study
showed that TNFA�308 A allele was associated with a lower risk of
breast cancer amongst European populations [41]. However, several
register-based and cohort studies have found no association between
TNF levels and breast cancer risk [42] or a reduced risk of breast can-
cer with TNF inhibitor use [36]. The protective effect of anti-TNF ther-
apy observed on breast cancer risk may have been confounded by
unmeasured effects of non-steroidal anti-inflammatory drugs [43]
and other synthetic disease-modifying anti-rheumatic drugs [44] in
patients with autoimmune diseases. Endometrial cancer risk was
increased in women with elevated pre-diagnostic concentrations of
TNF in a case-control study with 270 cases and 518 controls [45].
However, there was no association between TNF and endometrial
cancer in a prospective study [46].

4.3. Clinical implications

Increased risk of cardiovascular disease with genetically predicted
high TNF level sheds light on the usage of anti-TNF medicine as a
potential prevention approach for people with excessive risk of CVD
and a potential treatment strategy for patients with impaired cardio-
vascular condition. In addition, clinicians need to assess the potential
increased CVD risk derived from TNF therapy especially amongst



Fig. 2. Associations of genetically higher TNF levels with cardiovascular diseases and cancers. AFGen indicates Atrial Fibrillation Consortium; BCAC, Breast Cancer Association Con-
sortium; CARDIoGRAMplusC4D, Coronary ARtery DIsease Genome wide Replication and Meta-analysis plus The Coronary Artery Disease Genetics; CI, confidence interval; ILCCO,
International Lung Cancer Consortium; NA, not available; OCAC, The Ovarian Cancer Association Consortium; OR, odds ratio; PRACTICAL, Prostate Cancer Association Group to Inves-
tigate Cancer Associated Alterations in the Genome consortium; TNF, tumour necrosis factor; UKBB, UK Biobank.
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individuals with inherited or acquired high risk of CVD. With regard
to the observed protective effect of TNF on cancer, our study reveals
two important clinical considerations. Firstly, it suggests recombinant
TNF therapy as a potential therapy in such cancers, in particular colo-
rectal and breast cancers. Phase 2 trials of recombinant TNF across a
range of cancer types have so far not proven successful in causing
tumour responses [47] and associated with significant toxicity [48].
An exception is the use of local TNF administered locally by isolated
limb perfusion treatments in melanoma and sarcoma [47], or in iso-
lated hepatic perfusion for treatment of liver metastasis [49] which
have demonstrated that TNF alone or in combination to cause large
response rates of up to 80%. Such studies have been focused on
advanced and metastatic cancers for which prognoses are poor and a
significant tumour response would be unlikely. Future studies should
assess the tumour responses in patients with earlier-staged disease
and in combination therapies. The second important clinical implica-
tion of the inverse associations observed between TNF levels and can-
cer risk relates to the use of anti-TNF biological therapies, which are
highly effective and ingrained in guidelines for the management of
conditions such as rheumatoid arthritis and inflammatory bowel dis-
ease. Such therapies have previously been associated with concerns
regarding cancer risk, particularly lymphoma [50] and non-mela-
noma skin cancer [51]. In line with the general consensus, we do not
demonstrate a significant association with these cancer types.

4.4. Strengths, limitations and caveats

The MR design, which diminishes confounding and reverse cau-
sality, was the major strength of this study. Additionally, we compre-
hensively assessed the causal associations of TNF levels with a broad
range of CVD and cancer outcomes. Data were mainly extracted from
individuals of European ancestry, except for a few outcomes with a
small portion of individuals of non-European ancestry. Moreover, the
SNP-exposure and SNP-outcome estimates were adjusted for princi-
pal components for ancestry. Thus, population stratification bias is
unlikely to have had an essential effect on our results. On the other
hand, this population confinement, on a certain degree, compromised
the generalizability of the study results to other populations, such as
Asians, African Americans, etc. A major limitation is that the number
of cases was few for some CVDs and site-specific cancers, which
resulted in low precision of the estimates. Thus, we may have missed
weak associations.

The results of this MR study should be interpreted in light of the
pleiotropic effects of TNF, which plays a role in a wide range of bio-
logical processes, such as immunity, inflammation, apoptosis, lipid
metabolism, and coagulation [1-3]. Although the observed associa-
tions of genetically higher TNF levels with increased risk of CVD (par-
ticularly atherosclerotic- and thrombotic-related CVDs) and lower
risk of cancer are biologically plausible, we cannot entirely rule out
that our results might have been affected by horizontal pleiotropy.
For example, three of the four SNPs were associated with hypothy-
roidism, potentially reflecting autoimmune thyroiditis. The possible
role of hypothyroidism in mediating (vertical pleiotropy) or biasing
(horizontal pleiotropy) the results are unclear. In addition, even
though the instrumental variables used were validated using two
inflammatory diseases as positive controls, our findings need to be
interpreted with caution given that the excluded SNP may have influ-
ences on inflammation in an opposite pathway or atherosclerosis
only. Based on current findings, a comparative effect on cardiovascu-
lar system and carcinogenesis of anti-TNF therapies and treatments
established on other biological mechanisms cannot be determined.
Thus, the study provides limited evidence on drug selection in
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rheumatic disease treatment. Considering high risk of certain
malignancies in individuals with rheumatic disease [52], randomized
controlled trials are warranted to verify our findings and comprehen-
sively evaluate the benefits and risks of anti-TNF therapy in popula-
tions with different health conditions, even though TNF levels of
most included participants were in the healthy range [12].

Conclusions

This MR study found evidence of causal associations of increased
TNF levels with higher risk of coronary artery disease, ischaemic
stroke, and venous thromboembolism and decreased risk of overall,
colorectal, breast, endometrial, and lung cancer. Along with previous
observational studies [6,10], the present study strengthened the evi-
dence that TNF inhibitors might reduce the risk of common cardio-
vascular events but increase risk of overall and certain cancers. These
results may inform decisions concerning potential benefits and risks
of TNF inhibitor therapy.
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