9 research outputs found

    Protein markers for insulin-producing beta cells with higher glucose sensitivity

    Get PDF
    Background and Methodology: Pancreatic beta cells show intercellular differences in their metabolic glucose sensitivity and associated activation of insulin production. To identify protein markers for these variations in functional glucose sensitivity, rat beta cell subpopulations were flow-sorted for their level of glucose-induced NAD(P) H and their proteomes were quantified by label-free data independent alternate scanning LC-MS. Beta cell-selective proteins were also identified through comparison with rat brain and liver tissue and with purified islet alpha cells, after geometrical normalization using 6 stably expressed reference proteins. Principal Findings: All tissues combined, 943 proteins were reliably quantified. In beta cells, 93 out of 467 quantifiable proteins were uniquely detected in this cell type; several other proteins presented a high molar abundance in beta cells. The proteome of the beta cell subpopulation with high metabolic and biosynthetic responsiveness to 7.5 mM glucose was characterized by (i) an on average 50% higher expression of protein biosynthesis regulators such as 40S and 60S ribosomal constituents, NADPH-dependent protein folding factors and translation elongation factors; (ii) 50% higher levels of enzymes involved in glycolysis and in the cytosolic arm of the malate/aspartate-NADH-shuttle. No differences were noticed in mitochondrial enzymes of the Krebs cycle, beta-oxidation or respiratory chain. Conclusions: Quantification of subtle variations in the proteome using alternate scanning LC-MS shows that beta cell metabolic glucose responsiveness is mostly associated with higher levels of glycolytic but not of mitochondrial enzymes

    Evaluation of Acquisition Modes for Semi-Quantitative Analysis by Targeted and Untargeted Mass Spectrometry

    Get PDF
    RATIONALE: Analyte quantitation by mass spectrometry underpins a diverse range of scientific endeavors. The fast growing field of mass spectrometer development has resulted in several targeted and untargeted acquisition modes suitable for these applications. By characterizing the acquisition methods available on an ion mobility (IM) enabled orthogonal acceleration time-of-flight (oa-ToF) instrument, the optimum modes for analyte semi-quantitation can be deduced. METHODS: Serial dilutions of commercial metabolite, peptide, or crosslinked peptide analytes were prepared in matrices of human urine or E. coli digest. Each analyte dilution was introduced into an IM separation enabled oa-ToF mass spectrometer by reversed phase liquid chromatography and electrospray ionization. Data were acquired for each sample in duplicate using nine different acquisition modes, including four IM enabled acquisitions modes, available on the mass spectrometer. RESULTS: Five (metabolite) or seven (peptide/crosslinked peptide) point calibration curves were prepared for analytes across each of the acquisition modes. A non-linear response was observed at high concentrations for some modes, attributed to saturation effects. Two correction methods, one MS1 isotope-correction and one MS2 ion intensity-correction, were applied to address this observation, resulting in an up to two-fold increase in dynamic range. By averaging the semi-quantitative results across analyte classes, two parameters, linear dynamic range (LDR) and lower limit of quantitation (LLOQ), were determined to evaluate each mode. CONCLUSION: Comparison of the acquisition modes revealed that data independent acquisition and parallel reaction monitoring methods are most robust for semi-quantitation when considering achievable LDR and LLOQ. IM enabled modes exhibited sensitivity increases, but a simultaneous reduction in dynamic range which required correction methods to recover. These findings will assist users in identifying the optimum acquisition mode for their analyte quantitation needs, supporting a diverse range of applications and providing guidance for future acquisition mode developments

    A comparison of collision cross section values obtained via travelling wave ion mobility-mass spectrometry and ultra high performance liquid chromatography-ion mobility-mass spectrometry : application to the characterisation of metabolites in rat urine

    Get PDF
    A comprehensive Collision Cross Section (CCS) library was obtained via Travelling Wave Ion Guide mobility measurements through direct infusion (DI). The library consists of CCS and Mass Spectral (MS) data in negative and positive ElectroSpray Ionisation (ESI) mode for 463 and 479 endogenous metabolites, respectively. For both ionisation modes combined, TWCCSN2 data were obtained for 542 non-redundant metabolites. These data were acquired on two different ion mobility enabled orthogonal acceleration QToF MS systems in two different laboratories, with the majority of the resulting TWCCSN2 values (from detected compounds) found to be within 1% of one another. Validation of these results against two independent, external TWCCSN2 data sources and predicted TWCCSN2 values indicated to be within 1-2% of these other values. The same metabolites were then analysed using a rapid reversed-phase ultra (high) performance liquid chromatographic (U(H)PLC) separation combined with IM and MS (IM-MS) thus providing retention time (tr), m/z and TWCCSN2 values (with the latter compared with the DI-IM-MS data). Analytes for which TWCCSN2 values were obtained by U(H)PLC-IM-MS showed good agreement with the results obtained from DI-IM-MS. The repeatability of the TWCCSN2 values obtained for these metabolites on the different ion mobility QToF systems, using either DI or LC, encouraged the further evaluation of the U(H)PLC-IM-MS approach via the analysis of samples of rat urine, from control and methotrexate-treated animals, in order to assess the potential of the approach for metabolite identification and profiling in metabolic phenotyping studies. Based on the database derived from the standards 63 metabolites were identified in rat urine, using positive ESI, based on the combination of tr, TWCCSN2 and MS data.</p

    Elevation of glycoprotein nonmetastatic melanoma protein B in type 1 Gaucher disease patients and mouse models.

    Get PDF
    Gaucher disease is caused by inherited deficiency of lysosomal glucocerebrosidase. Proteome analysis of laser-dissected splenic Gaucher cells revealed increased amounts of glycoprotein nonmetastatic melanoma protein B (gpNMB). Plasma gpNMB was also elevated, correlating with chitotriosidase and CCL18, which are established markers for human Gaucher cells. In Gaucher mice, gpNMB is also produced by Gaucher cells. Correction of glucocerebrosidase deficiency in mice by gene transfer or pharmacological substrate reduction reverses gpNMB abnormalities. In conclusion, gpNMB acts as a marker for glucosylceramide-laden macrophages in man and mouse and gpNMB should be considered as candidate biomarker for Gaucher disease in treatment monitoring

    Operation Moonshot: rapid translation of a SARS-CoV-2 targeted peptide immunoaffinity liquid chromatography-tandem mass spectrometry test from research into routine clinical use

    Get PDF
    OBJECTIVES: During 2020, the UK's Department of Health and Social Care (DHSC) established the Moonshot programme to fund various diagnostic approaches for the detection of SARS-CoV-2, the pathogen behind the COVID-19 pandemic. Mass spectrometry was one of the technologies proposed to increase testing capacity. METHODS: Moonshot funded a multi-phase development programme, bringing together experts from academia, industry and the NHS to develop a state-of-the-art targeted protein assay utilising enrichment and liquid chromatography tandem mass spectrometry (LC-MS/MS) to capture and detect low levels of tryptic peptides derived from SARS-CoV-2 virus. The assay relies on detection of target peptides, ADETQALPQRK (ADE) and AYNVTQAFGR (AYN), derived from the nucleocapsid protein of SARS-CoV-2, measurement of which allowed the specific, sensitive, and robust detection of the virus from nasopharyngeal (NP) swabs. The diagnostic sensitivity and specificity of LC-MS/MS was compared with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) via a prospective study. RESULTS: Analysis of NP swabs (n=361) with a median RT-qPCR quantification cycle (Cq) of 27 (range 16.7-39.1) demonstrated diagnostic sensitivity of 92.4% (87.4-95.5), specificity of 97.4% (94.0-98.9) and near total concordance with RT-qPCR (Cohen's Kappa 0.90). Excluding Cq>32 samples, sensitivity was 97.9% (94.1-99.3), specificity 97.4% (94.0-98.9) and Cohen's Kappa 0.95. CONCLUSIONS: This unique collaboration between academia, industry and the NHS enabled development, translation, and validation of a SARS-CoV-2 method in NP swabs to be achieved in 5 months. This pilot provides a model and pipeline for future accelerated development and implementation of LC-MS/MS protein/peptide assays into the routine clinical laboratory

    Use of Cyclic Ion Mobility Spectrometry (cIM)-Mass Spectrometry to Study the Intramolecular Transacylation of Diclofenac Acyl Glucuronide

    No full text
    1-β-O-Acyl-glucuronides (AGs) are common metabolites of carboxylic acid-containing xenobiotics, including, e.g., many nonsteroidal anti-inflammatory drugs (NSAIDs). They are of concern to regulatory authorities because of the association of these metabolites with the hepatotoxicity that has resulted in drug withdrawal. One factor in assessing the potential risk posed by AGs is the rate of transacylation of the biosynthetic 1-β-O-acyl form to the 2-, 3-, and 4-O-acyl isomers. While transacylation can be measured using 1H NMR spectroscopy or liquid chromatography-mass spectrometry (LC-MS), the process can be time consuming and involve significant method development. The separation of these positional isomers by ion mobility spectrometry (IMS) has the potential to allow their rapid analysis, but conventional instruments lacked the resolving power to do this. Prediction of the collision cross section (CCS) using a machine learning model suggested that greater IMS resolution might be of use in this area. Cyclic IMS was evaluated for separating mixtures of isomeric AGs of diclofenac and was compared with a conventional ultraperformance liquid chromatography (UPLC)-MS method as a means for studying transacylation kinetics. The resolution of isomeric AGs was not seen using a conventional traveling wave IMS device; however, separation was seen after several passes around a cyclic IMS. The cyclic IMS enabled the degradation of the 1-β-O-acyl-isomer to be analyzed much more rapidly than by LC-MS. The ability of cyclic IMS to monitor the rate of AG transacylation at different pH values, without the need for a prior chromatographic separation, should allow high-throughput, real-time, monitoring of these types of reactions

    Operation Moonshot: rapid translation of a SARS-CoV-2 targeted peptide immunoaffinity liquid chromatography-tandem mass spectrometry test from research into routine clinical use

    No full text
    Objectives During 2020, the UK’s Department of Health and Social Care (DHSC) established the Moonshot programme to fund various diagnostic approaches for the detection of SARS-CoV-2, the pathogen behind the COVID-19 pandemic. Mass spectrometry was one of the technologies proposed to increase testing capacity. Methods Moonshot funded a multi-phase development programme, bringing together experts from academia, industry and the NHS to develop a state-of-the-art targeted protein assay utilising enrichment and liquid chromatography tandem mass spectrometry (LC-MS/MS) to capture and detect low levels of tryptic peptides derived from SARS-CoV-2 virus. The assay relies on detection of target peptides, ADETQALPQRK (ADE) and AYNVTQAFGR (AYN), derived from the nucleocapsid protein of SARS-CoV-2, measurement of which allowed the specific, sensitive, and robust detection of the virus from nasopharyngeal (NP) swabs. The diagnostic sensitivity and specificity of LC-MS/MS was compared with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) via a prospective study. Results Analysis of NP swabs (n=361) with a median RT-qPCR quantification cycle (Cq) of 27 (range 16.7–39.1) demonstrated diagnostic sensitivity of 92.4% (87.4–95.5), specificity of 97.4% (94.0–98.9) and near total concordance with RT-qPCR (Cohen’s Kappa 0.90). Excluding Cq>32 samples, sensitivity was 97.9% (94.1–99.3), specificity 97.4% (94.0–98.9) and Cohen’s Kappa 0.95. Conclusions This unique collaboration between academia, industry and the NHS enabled development, translation, and validation of a SARS-CoV-2 method in NP swabs to be achieved in 5 months. This pilot provides a model and pipeline for future accelerated development and implementation of LC-MS/MS protein/peptide assays into the routine clinical laboratory.</p

    Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness.

    No full text
    Contains fulltext : 108785.pdf (publisher's version ) (Closed access)Using exome sequencing, we identify SERAC1 mutations as the cause of MEGDEL syndrome, a recessive disorder of dystonia and deafness with Leigh-like syndrome, impaired oxidative phosphorylation and 3-methylglutaconic aciduria. We localized SERAC1 at the interface between the mitochondria and the endoplasmic reticulum in the mitochondria-associated membrane fraction that is essential for phospholipid exchange. A phospholipid analysis in patient fibroblasts showed elevated concentrations of phosphatidylglycerol-34:1 (where the species nomenclature denotes the number of carbon atoms in the two acyl chains:number of double bonds in the two acyl groups) and decreased concentrations of phosphatidylglycerol-36:1 species, resulting in an altered cardiolipin subspecies composition. We also detected low concentrations of bis(monoacyl-glycerol)-phosphate, leading to the accumulation of free cholesterol, as shown by abnormal filipin staining. Complementation of patient fibroblasts with wild-type human SERAC1 by lentiviral infection led to a decrease and partial normalization of the mean ratio of phosphatidylglycerol-34:1 to phosphatidylglycerol-36:1. Our data identify SERAC1 as a key player in the phosphatidylglycerol remodeling that is essential for both mitochondrial function and intracellular cholesterol trafficking.01 juli 201
    corecore