83 research outputs found

    ACTIVE VIBRATION CONTROL BY PIEZOCERAMIC ACTUATORS OF A CAR FLOOR PANEL

    Get PDF
    Active vibration control was successfully tested in many automotive and aeronautical applications. The main purpose of this work is the implementation and experimental investigation of the applicability and efficiency of an active vibration control (AVC) concept for vibration reduction in an automobile passenger compartment. In the contest of the presented activity, the floor panel of a medium-class test car has been studied as test case for an AVC implementation based on the use of piezoelectric actuators. A preliminary numerical activity has been performed for the correct evaluation of the dynamic behaviour of the system under the specific external disturbance spectra; based upon this information, a procedure for the correct positioning of sensors and actuators devices has been implemented. The following experimental activity has then been dedicated to the implementation of both SISO (Single Input Single Output) and SIMO (Single Input Multiple Output) feedforward control applications, under simulated conditions of external disturbance field. The principal results that will be discussed within the paper show a good ability of the actuation system to manage the control signals in terms of vibrational energy; this circumstance, candidate piezoelectric patches as adequate actuation devices. Under the specific control point of view, it appears evident that SISO results are appreciable only at error sensor, while uncontrollable conditions emerge at other locations. This limitation may be partially overcome with the SIMO architecture, but a review of the main limitations concerning this architecture are also presented

    ACTIVE VIBRATION CONTROL BY PIEZOCERAMIC ACTUATORS OF A CAR FLOOR PANEL

    Get PDF
    International audienceActive vibration control was successfully tested in many automotive and aeronautical applications. The main purpose of this work is the implementation and experimental investigation of the applicability and efficiency of an active vibration control (AVC) concept for vibration reduction in an automobile passenger compartment. In the contest of the presented activity, the floor panel of a medium-class test car has been studied as test case for an AVC implementation based on the use of piezoelectric actuators. A preliminary numerical activity has been performed for the correct evaluation of the dynamic behaviour of the system under the specific external disturbance spectra; based upon this information, a procedure for the correct positioning of sensors and actuators devices has been implemented. The following experimental activity has then been dedicated to the implementation of both SISO (Single Input Single Output) and SIMO (Single Input Multiple Output) feedforward control applications, under simulated conditions of external disturbance field. The principal results that will be discussed within the paper show a good ability of the actuation system to manage the control signals in terms of vibrational energy; this circumstance, candidate piezoelectric patches as adequate actuation devices. Under the specific control point of view, it appears evident that SISO results are appreciable only at error sensor, while uncontrollable conditions emerge at other locations. This limitation may be partially overcome with the SIMO architecture , but a review of the main limitations concerning this architecture are also presented

    O mutualismo e sua contribuição para a expansão da cidadania no Brasil

    Get PDF
    O presente artigo tem como objetivo apresentar resultados da pesquisa intitulada “Expansão da Autoridade Pública e Cidadania: proposição, implantação e recepção dos projetos de República no Brasil (1870-1909)”. O enfoque é dado sobre as associações de caráter mutualista, entendidas como expressão do processo de organização da sociedade civil e contribuidoras para a expansão da cidadania

    Temperature behavior and logic circuit applications of InAs nanowire-based field-effect transistors

    Get PDF
    InAs nanowire-based back-gated field-effect transistors realized starting from individual InAs nanowires are investigated at different temperatures and as building blocks of inverter circuits for logic applications. The nanodevices show n-type behavior with a carrier concentration up to 8.0 × 1017 cm−3 and corresponding electron mobility exceeding 1590 and 1940 cm2 V−1 s−1 at room temperature and 200 K, respectively. The investigation over a wide temperature range indicates no Schottky barrier at source/drain electrodes, where Ohmic contacts are formed with the Cr adhesion layer. The switching characteristics of the devices improve with decreasing temperature and a subthreshold swing less than 1 V/decade is achieved at 200 K, suggesting the occurrence of a trap population with density around 4 × 108 cm−1 eV−1. Besides, the nanodevices are exploited in single-transistor circuits with a resistive load. As an inverter, the circuit shows 30 % and 24 % of the voltage supply noise margins for the high and low states, respectively; as a low signal amplifier, it shows a gain that is weakly dependent on temperature. The present study highlights the impact of temperature on the operation of InAs nanowire-based back-gated transistors and evidences their potential applications in logic circuits including inverters and low-signal amplifiers

    Efficacy of n-acetylcysteine on endometriosis-related pain, size reduction of ovarian endometriomas, and fertility outcomes

    Get PDF
    Abstract: Background: Endometriosis is a chronic, estrogen-dependent, inflammatory disease, whose pivotal symptoms are dysmenorrhea, dyspareunia, and chronic pelvic pain (CPP). Besides the usual medical treatments, recent evidence suggests there are potential benefits of oral N-acetylcysteine (NAC) on endometriotic lesions and pain. The primary objective of this prospective single-cohort study was to confirm the effectiveness of NAC in reducing endometriosis-related pain and the size of ovarian endometriomas. The secondary objective was to assess if NAC may play a role in improving fertility and reducing the Ca125 serum levels. Methods: Patients aged between 18–45 years old with a clinical/histological diagnosis of endometriosis and no current hormonal treatment or pregnancy were included in the study. All patients received quarterly oral NAC 600 mg, 3 tablets/day for 3 consecutive days of the week for 3 months. At baseline and after 3 months, dysmenorrhea, dyspareunia and CPP were assessed using the Visual Analog Scale score (VAS), while the size of the endometriomas was estimated through a transvaginal ultrasound. Analgesics (NSAIDs) intake, the serum levels of Ca125 and the desire for pregnancy were also investigated. Finally, the pregnancy rate of patients with reproductive desire was evaluated. Results: One hundred and twenty patients were recruited. The intensity of dysmenorrhea, dyspareunia and CPP significantly improved (p < 0.0001). The use of NSAIDs (p = 0.001), the size of the endometriomas (p < 0.0001) and the serum levels of Ca125 (p < 0.0001) significantly decreased. Among the 52 patients with reproductive desire, 39 successfully achieved pregnancy within 6 months of starting therapy (p = 0.001). Conclusions: Oral NAC improves endometriosis-related pain and the size of endometriomas. Furthermore, it decreases Ca125 serum levels and may improve fertility in patients with endometriosis

    SARS-CoV-2 infection in pregnancy. Clues and proof of adverse outcomes

    Get PDF
    Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) represents one of the most threatening viral infections in the last decade. Amongst susceptible individuals, infected pregnant women might be predisposed to severe complications. Despite the extensive interest in SARS-CoV-2 research, the clinical course of maternal infection, the vertical transmission and the neonatal outcomes have not been completely understood yet. The aim of our study was to investigate the association between SARS-CoV-2 infection, obstetric outcomes and vertical transmission. Methods: A prospective observational study was performed, enrolling unvaccinated pregnant patients positive for SARS-CoV-2 (cases) and matched with uninfected pregnant women (controls). Maternal and neonatal nasopharyngeal swabs, maternal and cord blood, amniotic fluid and placenta tissue samples were collected; blood samples were tested for anti-S and anti-N antibodies, and histologic examination of placental tissues was performed. Results: The cases showed a significant association with the development of some obstetric complications, such as intrauterine growth restriction and pregnancy-associated hypothyroidism and diabetes, as compared to controls; their newborns were more likely to have a low birth weight and an arterial umbilical pH less than 7. The viral genome was detected in maternal and cord blood and placental samples in six cases. Conclusions: Pregnant women positive for SARS-CoV-2 infection are more likely to develop severe obstetric outcomes; their newborns could have a low birth weight and arterial pH. Vertical transmission seems a rare event, and further investigation is strongly needed

    Dominant n-type conduction and fast photoresponse in BP/MoS2 heterostructures

    Get PDF
    In recent years, van der Waals heterojunctions between two-dimensional (2D) materials have garnered significant attention for their unique electronic and optoelectronic properties and have opened avenues for innovative device architectures and applications. Among them, the heterojunction formed by black phosphorus (BP) and molybdenum disulfide (MoS2) stands out as a promising candidate for advanced optoelectronic devices. This study unravels the interplay between BP, MoS2, and Cr contacts to explain the electrical behavior of a BP/MoS2 heterojunction showing rectifying behavior with dominant n-type conduction, and a high ON/OFF current ratio around 104 at ± 20 V. The higher unexpected current observed when applying a negative bias to either MoS2 or BP side is elucidated by an energy band model incorporating a type II heterojunction at the BP/MoS2 interface with Cr forming a Schottky contact with MoS2 and an ohmic contact with BP. The BP/MoS2 heterojunction shows pronounced photoresponse, linearly dependent on the incident laser power, with a responsivity of 100 μA/W under white light at 50 μW incident power. Time-resolved photocurrent measurements reveal a relatively fast response with characteristic rise times less than 200 ms. This work demonstrates that BP/MoS2 van der Waals heterojunctions have unique electrical and photoresponse characteristics that are promising for advanced optoelectronic applications

    Navigating the liquid biopsy Minimal Residual Disease (MRD) in non-small cell lung cancer: Making the invisible visible

    Get PDF
    Liquid biopsy has gained increasing interest in the growing era of precision medicine as minimally invasive technique. Recent findings demonstrated that detecting minimal or molecular residual disease (MRD) in NSCLC is a challenging matter of debate that need multidisciplinary competencies, avoiding the overtreatment risk along with achieving a significant survival improvement. This review aims to provide practical consideration for solving data interpretation questions about MRD in NSCLC thanks to the close cooperation between biologists and oncology clinicians. We discussed with a translational approach the critical point of view from benchside, bedside and bunchside to facilitate the future applicability of liquid biopsy in this setting. Herein, we defined the clinical significance of MRD, focusing on relevant practical consideration about advantages and disadvantages, speculating on future clinical trial design and standardization of MRD technology

    COVID-19 in patients with thoracic malignancies (TERAVOLT): first results of an international, registry-based, cohort study

    Get PDF
    Background: Early reports on patients with cancer and COVID-19 have suggested a high mortality rate compared with the general population. Patients with thoracic malignancies are thought to be particularly susceptible to COVID-19 given their older age, smoking habits, and pre-existing cardiopulmonary comorbidities, in addition to cancer treatments. We aimed to study the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on patients with thoracic malignancies. Methods: The Thoracic Cancers International COVID-19 Collaboration (TERAVOLT) registry is a multicentre observational study composed of a cross-sectional component and a longitudinal cohort component. Eligibility criteria were the presence of any thoracic cancer (non-small-cell lung cancer [NSCLC], small-cell lung cancer, mesothelioma, thymic epithelial tumours, and other pulmonary neuroendocrine neoplasms) and a COVID-19 diagnosis, either laboratory confirmed with RT-PCR, suspected with symptoms and contacts, or radiologically suspected cases with lung imaging features consistent with COVID-19 pneumonia and symptoms. Patients of any age, sex, histology, or stage were considered eligible, including those in active treatment and clinical follow-up. Clinical data were extracted from medical records of consecutive patients from Jan 1, 2020, and will be collected until the end of pandemic declared by WHO. Data on demographics, oncological history and comorbidities, COVID-19 diagnosis, and course of illness and clinical outcomes were collected. Associations between demographic or clinical characteristics and outcomes were measured with odds ratios (ORs) with 95% CIs using univariable and multivariable logistic regression, with sex, age, smoking status, hypertension, and chronic obstructive pulmonary disease included in multivariable analysis. This is a preliminary analysis of the first 200 patients. The registry continues to accept new sites and patient data. Findings: Between March 26 and April 12, 2020, 200 patients with COVID-19 and thoracic cancers from eight countries were identified and included in the TERAVOLT registry; median age was 68·0 years (61·8-75·0) and the majority had an Eastern Cooperative Oncology Group performance status of 0-1 (142 [72%] of 196 patients), were current or former smokers (159 [81%] of 196), had non-small-cell lung cancer (151 [76%] of 200), and were on therapy at the time of COVID-19 diagnosis (147 [74%] of 199), with 112 (57%) of 197 on first-line treatment. 152 (76%) patients were hospitalised and 66 (33%) died. 13 (10%) of 134 patients who met criteria for ICU admission were admitted to ICU; the remaining 121 were hospitalised, but were not admitted to ICU. Univariable analyses revealed that being older than 65 years (OR 1·88, 95% 1·00-3·62), being a current or former smoker (4·24, 1·70-12·95), receiving treatment with chemotherapy alone (2·54, 1·09-6·11), and the presence of any comorbidities (2·65, 1·09-7·46) were associated with increased risk of death. However, in multivariable analysis, only smoking history (OR 3·18, 95% CI 1·11-9·06) was associated with increased risk of death. Interpretation: With an ongoing global pandemic of COVID-19, our data suggest high mortality and low admission to intensive care in patients with thoracic cancer. Whether mortality could be reduced with treatment in intensive care remains to be determined. With improved cancer therapeutic options, access to intensive care should be discussed in a multidisciplinary setting based on cancer specific mortality and patients' preference

    APOLLO 11 Project, Consortium in Advanced Lung Cancer Patients Treated With Innovative Therapies: Integration of Real-World Data and Translational Research

    Get PDF
    Introduction: Despite several therapeutic efforts, lung cancer remains a highly lethal disease. Novel therapeutic approaches encompass immune-checkpoint inhibitors, targeted therapeutics and antibody-drug conjugates, with different results. Several studies have been aimed at identifying biomarkers able to predict benefit from these therapies and create a prediction model of response, despite this there is a lack of information to help clinicians in the choice of therapy for lung cancer patients with advanced disease. This is primarily due to the complexity of lung cancer biology, where a single or few biomarkers are not sufficient to provide enough predictive capability to explain biologic differences; other reasons include the paucity of data collected by single studies performed in heterogeneous unmatched cohorts and the methodology of analysis. In fact, classical statistical methods are unable to analyze and integrate the magnitude of information from multiple biological and clinical sources (eg, genomics, transcriptomics, and radiomics). Methods and objectives: APOLLO11 is an Italian multicentre, observational study involving patients with a diagnosis of advanced lung cancer (NSCLC and SCLC) treated with innovative therapies. Retrospective and prospective collection of multiomic data, such as tissue- (eg, for genomic, transcriptomic analysis) and blood-based biologic material (eg, ctDNA, PBMC), in addition to clinical and radiological data (eg, for radiomic analysis) will be collected. The overall aim of the project is to build a consortium integrating different datasets and a virtual biobank from participating Italian lung cancer centers. To face with the large amount of data provided, AI and ML techniques will be applied will be applied to manage this large dataset in an effort to build an R-Model, integrating retrospective and prospective population-based data. The ultimate goal is to create a tool able to help physicians and patients to make treatment decisions. Conclusion: APOLLO11 aims to propose a breakthrough approach in lung cancer research, replacing the old, monocentric viewpoint towards a multicomprehensive, multiomic, multicenter model. Multicenter cancer datasets incorporating common virtual biobank and new methodologic approaches including artificial intelligence, machine learning up to deep learning is the road to the future in oncology launched by this project
    corecore