50 research outputs found

    SNO and Supernovae

    Get PDF
    The Sudbury Neutrino Observatory (SNO) has unique capabilities as a supernova detector. In the event of a galactic supernova there are opportunities, with the data that SNO would collect, to constrain certain intrinsic neutrino properties significantly, to test details of the various models of supernova dynamics, and to provide prompt notification to the astronomical community through the Supernova Early Warning System (SNEWS). This paper consists of a discussion of these opportunities illustrated by some preliminary Monte Carlo results.Comment: 7 pages, latex, 3 eps figures, Invited paper at Neutrino Oscillations Workshop (NOW 2000), Otranto, Italy, September 9-16, 2000, to be published in the Proceeding

    Polarized photons in radiative muon capture

    Get PDF
    We discuss the measurement of polarized photons arising from radiative muon capture. The spectrum of left circularly polarized photons or equivalently the circular polarization of the photons emitted in radiative muon capture on hydrogen is quite sensitive to the strength of the induced pseudoscalar coupling constant gPg_P. A measurement of either of these quantities, although very difficult, might be sufficient to resolve the present puzzle resulting from the disagreement between the theoretical prediction for gPg_P and the results of a recent experiment. This sensitivity results from the absence of left-handed radiation from the muon line and from the fact that the leading parts of the radiation from the hadronic lines, as determined from the chiral power counting rules of heavy-baryon chiral perturbation theory, all contain pion poles.Comment: 10 pages, 6 figure

    Supernova Observation Via Neutrino-Nucleus Elastic Scattering in the CLEAN Detector

    Get PDF
    Development of large mass detectors for low-energy neutrinos and dark matter may allow supernova detection via neutrino-nucleus elastic scattering. An elastic-scattering detector could observe a few, or more, events per ton for a galactic supernova at 10 kpc (3.1×10203.1 \times 10^{20} m). This large yield, a factor of at least 20 greater than that for existing light-water detectors, arises because of the very large coherent cross section and the sensitivity to all flavors of neutrinos and antineutrinos. An elastic scattering detector can provide important information on the flux and spectrum of νμ\nu_\mu and ντ\nu_\tau from supernovae. We consider many detectors and a range of target materials from 4^4He to 208^{208}Pb. Monte Carlo simulations of low-energy backgrounds are presented for the liquid-neon-based Cryogenic Low Energy Astrophysics with Noble gases (CLEAN) detector. The simulated background is much smaller than the expected signal from a galactic supernova.Comment: 10 pages, 5 figures, submitted to Phys. Rev.

    The Sudbury Neutrino Observatory

    Full text link
    The Sudbury Neutrino Observatory is a second generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and epsf style files. For additional information about SNO see http://www.sno.phy.queensu.ca . This version has some new reference

    Measurement of the νe and total 8B solar neutrino fluxes with the Sudbury Neutrino Observatory phase-III data set

    Get PDF
    This paper details the solar neutrino analysis of the 385.17-day phase-III data set acquired by the Sudbury Neutrino Observatory (SNO). An array of 3He proportional counters was installed in the heavy-water target to measure precisely the rate of neutrino-deuteron neutral-current interactions. This technique to determine the total active 8B solar neutrino flux was largely independent of the methods employed in previous phases. The total flux of active neutrinos was measured to be 5.54-0.31+0.33(stat.)-0.34+0.36(syst.)×106 cm-2 s-1, consistent with previous measurements and standard solar models. A global analysis of solar and reactor neutrino mixing parameters yielded the best-fit values of Δm2=7.59-0.21+0.19×10 -5eV2 and θ=34.4-1.2+1.3degrees

    The Sudbury Neutrino Observatory

    No full text

    A search for doubly charged higgs production in z0 decays

    Get PDF
    Contains fulltext : 124394.pdf (preprint version ) (Open Access

    Agile Scrum Development in an ad hoc Software Collaboration

    No full text
    Developing sustainable scientific software for the needs of the scientific community requires expertise in both software engineering and domain science. This can be challenging due to the unique needs of scientific software, the insufficient resources for modern software engineering practices in the scientific community, and the complexity of evolving scientific contexts for developers. These difficulties can be reduced if scientists and developers collaborate. We present a case study wherein scientists from the SuperNova Early Warning System collaborated with software developers from the Scalable Cyberinfrastructure for Multi-Messenger Astrophysics project. The collaboration addressed the difficulties of scientific software development, but presented additional risks to each team. For the scientists, there was a concern of relying on external systems and lacking control in the development process. For the developers, there was a risk in supporting the needs of an user-group while maintaining core development. We mitigated these issues by utilizing an Agile Scrum framework to orchestrate the collaboration. This promoted communication and cooperation, ensuring that the scientists had an active role in development while allowing the developers to quickly evaluate and implement the scientists' software requirements. While each system was still in an early stage, the collaboration provided benefits for each group: the scientists kick-started their development by using an existing platform, and the developers utilized the scientists' use-case to improve their systems. This case study suggests that scientists and software developers can avoid some difficulties of scientific computing by collaborating and can address emergent concerns using Agile Scrum methods
    corecore