40 research outputs found

    MaxQuant. Live Enables Global Targeting of More Than 25,000 Peptides

    No full text
    Mass spectrometry (MS)-based proteomics is often performed in a shotgun format, in which as many peptide precursors as possible are selected from full or MS1 scans so that their fragment spectra can be recorded in MS2 scans. Although achieving great proteome depths, shotgun proteomics cannot guarantee that each precursor will be fragmented in each run. In contrast, targeted proteomics aims to reproducibly and sensitively record a restricted number of precursor/ fragment combinations in each run, based on prescheduled mass-to-charge and retention time windows. Here we set out to unify these two concepts by a global targeting approach in which an arbitrary number of precursors of interest are detected in real-time, followed by standard fragmentation or advanced peptide-specific analyses. We made use of a fast application programming interface to a quadrupole Orbitrap instrument and real-time recalibration in mass, retention time and intensity dimensions to predict precursor identity. MaxQuant. Live is freely available (www. maxquant. live) and has a graphical user interface to specify many predefined data acquisition strategies. Acquisition speed is as fast as with the vendor software and the power of our approach is demonstrated with the acquisition of breakdown curves for hundreds of precursors of interest. We also uncover precursors that are not even visible in MS1 scans, using elution time prediction based on the auto-adjusted retention time alone. Finally, we successfully recognized and targeted more than 25,000 peptides in single LC-MS runs. Global targeting combines the advantages of two classical approaches in MS-based proteomics, whereas greatly expanding the analytical toolbox. Molecular & Cellular Proteomics 18: 982-994, 2019. DOI: 10.1074/ mcp. TIR118.001131

    Human GBP1 does not localize to pathogen vacuoles but restricts Toxoplasma gondii

    Get PDF
    Guanylate binding proteins (GBPs) are a family of large interferon‐inducible GTPases that are transcriptionally upregulated upon infection with intracellular pathogens. Murine GBPs (mGBPs) including mGBP1 and 2 localize to and disrupt pathogen‐containing vacuoles (PVs) resulting in the cell‐autonomous clearing or innate immune detection of PV‐resident pathogens. Human GBPs (hGBPs) are known to exert antiviral host defense and activate the NLRP3 inflammasome, but it is unclear whether hGBPs can directly recognize and control intravacuolar pathogens. Here, we report that endogenous or ectopically expressed hGBP1 fails to associate with PVs formed in human cells by the bacterial pathogens Chlamydia trachomatis or Salmonella typhimurium or the protozoan pathogen Toxoplasma gondii. While we find that hGBP1 expression has no discernible effect on intracellular replication of C. trachomatis and S. typhimurium, we observed enhanced early Toxoplasma replication in CRISPR hGBP1‐deleted human epithelial cells. We thus identified a novel role for hGBP1 in cell‐autonomous immunity that is independent of PV translocation, as observed for mGBPs. This study highlights fundamental differences between human and murine GBPs and underlines the need to study the functions of GBPs at cellular locations away from PVs

    Urinary proteome profiling for stratifying patients with familial Parkinson's disease

    Get PDF
    The prevalence of Parkinson's disease (PD) is increasing but the development of novel treatment strategies and therapeutics altering the course of the disease would benefit from specific, sensitive, and non-invasive biomarkers to detect PD early. Here, we describe a scalable and sensitive mass spectrometry (MS)-based proteomic workflow for urinary proteome profiling. Our workflow enabled the reproducible quantification of more than 2,000 proteins in more than 200 urine samples using minimal volumes from two independent patient cohorts. The urinary proteome was significantly different between PD patients and healthy controls, as well as between LRRK2 G2019S carriers and non-carriers in both cohorts. Interestingly, our data revealed lysosomal dysregulation in individuals with the LRRK2 G2019S mutation. When combined with machine learning, the urinary proteome data alone were sufficient to classify mutation status and disease manifestation in mutation carriers remarkably well, identifying VGF, ENPEP, and other PD-associated proteins as the most discriminating features. Taken together, our results validate urinary proteomics as a valuable strategy for biomarker discovery and patient stratification in PD

    Identification of host proteins interacting with Toxoplasma gondii GRA15 (TgGRA15) by yeast two-hybrid system

    Get PDF
    Background Toxoplasma gondii, an obligate intracellular protozoan parasite, possesses the remarkable ability to co-opt host cell machinery in order to maintain its intracellular survival. This parasite can modulate signaling pathways of its host through the secretion of polymorphic effector proteins localized in the rhoptry and dense granule organelles. One of such effectors is T. gondii type II-specific dense granule protein 15, TgGRA15, which activates NF-κB pathway. The aim of the present study was to identify the host interaction partner proteins of TgGRA15. Methods We screened a yeast two-hybrid mouse cDNA library using TgGRA15 as the bait. TgGRA15 (PRU strain, Type II) was cloned into the pGBKT7 vector and expressed in the Y2HGold yeast strain. Then, the bait protein expression was validated by western blotting analysis, followed by auto-activation and toxicity tests in comparison with control (Y2HGold yeast strain transformed with empty pGBKT7 vector). Results This screening led to the identification of mouse Luzp1 and AW209491 as host binding proteins that interact with TgGRA15. Luzp1 contains three nuclear localizing signals and is involved in regulating a subset of host non-coding RNA genes. Conclusions These findings reveal, for the first time, new host cell proteins interacting with TgGRA15. The identification of these cellular targets and the understanding of their contribution to the host-pathogen interaction may serve as the foundation for novel therapeutic and prevention strategies against T. gondii infection

    Determinants of GBP Recruitment to Toxoplasma gondii Vacuoles and the Parasitic Factors That Control It

    Get PDF
    IFN-γ is a major cytokine that mediates resistance against the intracellular parasite Toxoplasma gondii. The p65 guanylate-binding proteins (GBPs) are strongly induced by IFN-γ. We studied the behavior of murine GBP1 (mGBP1) upon infection with T. gondii in vitro and confirmed that IFN-γ-dependent re-localization of mGBP1 to the parasitophorous vacuole (PV) correlates with the virulence type of the parasite. We identified three parasitic factors, ROP16, ROP18, and GRA15 that determine strain-specific accumulation of mGBP1 on the PV. These highly polymorphic proteins are held responsible for a large part of the strain-specific differences in virulence. Therefore, our data suggest that virulence of T. gondii in animals may rely in part on recognition by GBPs. However, phagosomes or vacuoles containing Trypanosoma cruzi did not recruit mGBP1. Co-immunoprecipitation revealed mGBP2, mGBP4, and mGBP5 as binding partners of mGBP1. Indeed, mGBP2 and mGBP5 co-localize with mGBP1 in T. gondii-infected cells. T. gondii thus elicits a cell-autonomous immune response in mice with GBPs involved. Three parasitic virulence factors and unknown IFN-γ-dependent host factors regulate this complex process. Depending on the virulence of the strains involved, numerous GBPs are brought to the PV as part of a large, multimeric structure to combat T. gondii.National Institutes of Health (U.S.)Massachusetts Life Sciences Center (New Investigator Award)National Institute of General Medical Sciences (U.S.) (Pre-Doctoral Grant in the Biological Sciences (5-T32-GM007287-33))Studienstiftung des deutschen VolkesCancer Research Institute (New York, N.Y.)Cleo and Paul Schimmel FoundationBayer HealthcareHuman Frontier Science Program (Strasbourg, France

    The Rhoptry Proteins ROP18 and ROP5 Mediate Toxoplasma gondii Evasion of the Murine, But Not the Human, Interferon-Gamma Response

    Get PDF
    The obligate intracellular parasite Toxoplasma gondii secretes effector proteins into the host cell that manipulate the immune response allowing it to establish a chronic infection. Crosses between the types I, II and III strains, which are prevalent in North America and Europe, have identified several secreted effectors that determine strain differences in mouse virulence. The polymorphic rhoptry protein kinase ROP18 was recently shown to determine the difference in virulence between type I and III strains by phosphorylating and inactivating the interferon-γ (IFNγ)-induced immunity-related GTPases (IRGs) that promote killing by disrupting the parasitophorous vacuole membrane (PVM) in murine cells. The polymorphic pseudokinase ROP5 determines strain differences in virulence through an unknown mechanism. Here we report that ROP18 can only inhibit accumulation of the IRGs on the PVM of strains that also express virulent ROP5 alleles. In contrast, specific ROP5 alleles can reduce IRG coating even in the absence of ROP18 expression and can directly interact with one or more IRGs. We further show that the allelic combination of ROP18 and ROP5 also determines IRG evasion and virulence of strains belonging to other lineages besides types I, II and III. However, neither ROP18 nor ROP5 markedly affect survival in IFNγ-activated human cells, which lack the multitude of IRGs present in murine cells. These findings suggest that ROP18 and ROP5 have specifically evolved to block the IRGs and are unlikely to have effects in species that do not have the IRG system, such as humans

    Transcriptional and Linkage Analyses Identify Loci that Mediate the Differential Macrophage Response to Inflammatory Stimuli and Infection

    Get PDF
    Macrophages display flexible activation states that range between pro-inflammatory (classical activation) and anti-inflammatory (alternative activation). These macrophage polarization states contribute to a variety of organismal phenotypes such as tissue remodeling and susceptibility to infectious and inflammatory diseases. Several macrophage- or immune-related genes have been shown to modulate infectious and inflammatory disease pathogenesis. However, the potential role that differences in macrophage activation phenotypes play in modulating differences in susceptibility to infectious and inflammatory disease is just emerging. We integrated transcriptional profiling and linkage analyses to determine the genetic basis for the differential murine macrophage response to inflammatory stimuli and to infection with the obligate intracellular parasite Toxoplasma gondii. We show that specific transcriptional programs, defined by distinct genomic loci, modulate macrophage activation phenotypes. In addition, we show that the difference between AJ and C57BL/6J macrophages in controlling Toxoplasma growth after stimulation with interferon gamma and tumor necrosis factor alpha mapped to chromosome 3, proximal to the Guanylate binding protein (Gbp) locus that is known to modulate the murine macrophage response to Toxoplasma. Using an shRNA-knockdown strategy, we show that the transcript levels of an RNA helicase, Ddx1, regulates strain differences in the amount of nitric oxide produced by macrophage after stimulation with interferon gamma and tumor necrosis factor. Our results provide a template for discovering candidate genes that modulate macrophage-mediated complex traits

    Genome-wide screens identify Toxoplasma gondii determinants of parasite fitness in IFNγ-activated murine macrophages

    Get PDF
    Macrophages play an essential role in the early immune response against Toxoplasma and are the cell type preferentially infected by the parasite in vivo. Interferon gamma (IFNγ) elicits a variety of anti-Toxoplasma activities in macrophages. Using a genome-wide CRISPR screen we identify 353 Toxoplasma genes that determine parasite fitness in naїve or IFNγ-activated murine macrophages, seven of which are further confirmed. We show that one of these genes encodes dense granule protein GRA45, which has a chaperone-like domain, is critical for correct localization of GRAs into the PVM and secretion of GRA effectors into the host cytoplasm. Parasites lacking GRA45 are more susceptible to IFNγ-mediated growth inhibition and have reduced virulence in mice. Together, we identify and characterize an important chaperone-like GRA in Toxoplasma and provide a resource for the community to further explore the function of Toxoplasma genes that determine fitness in IFNγ-activated macrophages

    The bacterial pigment pyocyanin inhibits the NLRP3 inflammasome through intracellular reactive oxygen and nitrogen species

    No full text
    corecore