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Urinary proteome profiling for stratifying patients
with familial Parkinson’s disease
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Abstract

The prevalence of Parkinson’s disease (PD) is increasing but the
development of novel treatment strategies and therapeutics alter-
ing the course of the disease would benefit from specific, sensitive,
and non-invasive biomarkers to detect PD early. Here, we describe
a scalable and sensitive mass spectrometry (MS)-based proteomic
workflow for urinary proteome profiling. Our workflow enabled
the reproducible quantification of more than 2,000 proteins in
more than 200 urine samples using minimal volumes from two
independent patient cohorts. The urinary proteome was signifi-
cantly different between PD patients and healthy controls, as well
as between LRRK2 G2019S carriers and non-carriers in both
cohorts. Interestingly, our data revealed lysosomal dysregulation in
individuals with the LRRK2 G2019S mutation. When combined with
machine learning, the urinary proteome data alone were sufficient
to classify mutation status and disease manifestation in mutation
carriers remarkably well, identifying VGF, ENPEP, and other PD-
associated proteins as the most discriminating features. Taken
together, our results validate urinary proteomics as a valuable
strategy for biomarker discovery and patient stratification in PD.
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Introduction

With a population prevalence of 0.2%, Parkinson’s disease (PD) is

the second most common neurodegenerative disorder after Alzhei-

mer’s disease (De Lau & Breteler, 2006). It is characterized by the

progressive loss of dopaminergic neurons and accumulation of a-
synuclein-containing protein aggregates called Lewy bodies in the

cytoplasm of the remaining neurons. As a result of dopaminergic

neuron loss, PD manifests with motor signs and symptoms includ-

ing bradykinesia, tremor, and rigidity, and these characteristics are

used for diagnosing the disease (De Lau & Breteler, 2006; Reeve

et al, 2014; Tysnes & Storstein, 2017).

PD is a genetically complex disorder. Most patients do not carry

a single pathogenic variant linked to PD, but a subset of about 10%

of patients carry an identifiable pathogenic variant in genes such as

SNCA, PRKN, LRRK2, or GBA. For these individuals, the risk of

developing the disease increases to 2–5% (Reeve et al, 2014).

Among these genes, LRRK2 is relatively common and causes PD in

an autosomal dominant with incomplete penetrance fashion. How

LRRK2 mutations cause PD is unknown, however, several studies

have indicated that disease-linked LRRK2 mutations elevate its

kinase activity and thereby contribute to PD pathogenesis (West

et al, 2005; West, 2015). We have previously identified multiple Rab

GTPases as endogenous targets of mutant LRRK2 (Steger et al, 2016;

Steger et al, 2017; Karayel et al, 2020). Furthermore, inhibitors of

this kinase have emerged as promising therapeutics for PD and clini-

cal trials have already passed phase 1(Tolosa et al, 2020). Although

idiopathic forms of PD presumably represent a heterogeneous

collection of pathogenic mechanisms, LRRK2-associated PD and

idiopathic PD (iPD) show a similar phenotype in terms of disease

symptoms and response to levodopa. The interest in LRRK2 as a

therapeutic target is also fueled by the association between common

variants in LRRK2 and sporadic PD (Nalls et al, 2019) and the obser-

vation that LRRK2 activity is increased in autopsied brain tissue

from iPD patients without a known pathogenic mutation (Di Maio

et al, 2018). Thus, it will be important to conduct studies on ante-

mortem biospecimens to gain insights into LRRK2 mutation-induced

changes and thereby identify iPD patients who could benefit from

LRRK2-targeted therapies.

Current treatments, including levodopa—the most effective PD

medication, mainly alleviate the motor symptoms rather than slow
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disease progression or reverse the pathology. Given the growing

number of PD patients worldwide, and escalating economic and

societal implications, there is an urgent need for disease-modifying

therapeutics. The development of new therapeutic strategies

requires better insights into the pathophysiologic mechanisms of PD

as well as biomarkers to detect the earliest stages of PD before

severe motor impairment is evident and irreversible brain damage

has already occurred. Although cerebrospinal fluid (CSF) has been

frequently used for biomarker studies of brain disorders, recent

studies indicate that urine offers another promising clinically viable

matrix for PD since it can be frequently and non-invasively collected

in large volumes (Alcalay et al, 2020). Importantly, urine contains

not only kidney and urinary tract proteins but also filtered plasma

proteins originating from distal organs, including the brain

(Decramer et al, 2008; An & Gao, 2015). Therefore, urine protein

analysis may provide diagnostic and prognostic opportunities for

both urogenital and non-renal diseases (Kaiser et al, 2004; Mischak

et al, 2004; Nguyen et al, 2005; Tantipaiboonwong et al, 2005;

Adachi et al, 2006; Ward et al, 2008; Zimmerli et al, 2008; Kentsis

et al, 2009; Nagaraj & Mann, 2011; Kentsis et al, 2013; Metzger

et al, 2013; Duangkumpha et al, 2019; Ferrari et al, 2019). Recent

technical advances in fast and high-throughput sample preparation

methods in conjunction with improvements in high-accuracy mass

spectrometry (MS)-based proteomics have enabled characterization

of the urinary proteome (Berger et al, 2015; Batth et al, 2019; Ding

et al, 2020). However, to what extent neurodegenerative disorders

including PD affect the urinary proteome remains unknown.

Our group has recently employed state-of-the-art MS-based

proteomics to obtain proteome profiles of the two body fluids

plasma and CSF in multiple disease conditions (Geyer et al, 2016a;

Geyer et al, 2016b; Albrechtsen et al, 2018; Geyer et al, 2019; Niu

et al, 2019). Here, we extend this technology to urinary proteome

profiling and provide first evidence that this approach can be used

for PD biomarker discovery. More specifically, we focused our anal-

ysis on two large patient cohorts, both including healthy control

subject, non-manifesting carriers of the frequently found LRRK2

G2019S mutation, manifesting patients with the same mutational

signature, and PD patients without the LRRK2 mutation. The compo-

sition of the cohorts, quality of the data, and the depth of proteome

coverage allowed us to identify pathogenic LRRK2-regulated lysoso-

mal protein signatures that could serve as biomarkers to stratify

subjects with pathogenic LRRK2. Taken together, our study offers

evidence that quantitative MS-based proteomics represents a clini-

cally useful strategy for non-invasive monitoring of disease progres-

sion and treatment response as well as patient stratification in PD.

Results

Overview of PD cohorts for urinary proteomics

Here, we employ a recently described “rectangular” biomarker

discovery strategy in which as many proteins as possible are

measured using shotgun MS-based proteomics for all the individuals

in both discovery and validation cohorts (Geyer et al, 2016b; Geyer

et al, 2017). To map proteome changes between individuals with

different mutation status and manifestation of disease, we analyzed

235 urine samples from two independent cross-sectional cohorts

each comprised of four subject groups: (i) healthy controls (HC,

LRRK2�/PD�); (ii) non-manifesting carriers (NMC) harboring the

LRRK2 G2019S mutation (LRRK2+/PD�); (iii) idiopathic PD patients

(iPD, LRRK2�/PD+); and (iv) manifesting PD patients with LRRK2

G2019S (LRRK2 PD, LRRK2+/PD+; Fig 1A and Table 1).

The first cohort was recruited at Columbia University Irving

Medical Center (hereinafter referred to as “Columbia cohort” and

color-coded with orange; Alcalay et al, 2020; Melachroinou et al,

2020). Participants in the Columbia cohort included 35 HC, 16

NMC, 40 iPD, 28 LRRK2 PD individuals, and one PD patient with an

unknown LRRK2 status. The cohort included 52 female sex and 68

male sex individuals (Fig 1A and Table 1). The GBA (gene that

encodes for lysosomal acid glucosylceramidase (GCase)) mutation

status was also available for all individuals, with 22 of them harbor-

ing a GBA variant and 98 the wild-type allele. PD+ and PD� subjects

were frequency-matched by age with means of 67.0 � 9.3 and

64.1 � 12.0 (� SD) years, respectively (Appendix Fig S1A). Their

motor skills were assessed using the Unified Parkinson’s Disease

Rating Scale part III (UPDRS-III) and cognitive functioning with the

Montreal Cognitive Assessment (MoCA) test (Appendix Fig S1B and

C). Genotyping for LRRK2 G2019S mutation was conducted as previ-

ously described (Alcalay et al, 2015).

To confirm findings from the Columbia cohort, we additionally

analyzed a subset of biobanked urine samples from the Michael J.

Fox Foundation for Parkinson’s Research (MJFF)-funded LRRK2

Cohort Consortium (LCC) (hereinafter referred to as “LCC cohort”

and color-coded with blue). We determined urine proteomes for 26

HC, 37 NMC, 29 iPD, and 23 LRRK2 PD individuals (53 female and

62 male) (Fig 1A and Table 1). In the LCC cohort, individuals in the

non-diseased group were somewhat younger (53.8 � 13.9 years)

than PD patients (67 � 7.6 years) (means � SD, Appendix Fig

S1D). In addition, LCC sample collection protocols were less strin-

gent than in the Columbia cohort and UPDRS-III and MoCA scores

were not available, indicating that the Columbia cohort is more

powerful for our analyses. Both studies were approved by local

institutional review boards, and each participant signed an informed

consent (see Dataset EV1 for a detailed overview).

Proteomic characterization of urine samples

For the proteomic profiling of individual urine samples, we devel-

oped a high-throughput proteomics workflow building on the PVDF-

based sample processing method MStern blotting by the Steen group

(Berger et al, 2015) combined with data-independent acquisition

(DIA) LC-MS/MS (Gillet et al, 2012; Ludwig et al, 2018; Fig 1A). To

maximize proteome depth, we generated two cohort-specific hybrid

spectral libraries by merging three sub-libraries: (i) a library

constructed by data-dependent acquisition (DDA) consisting of 24

fractions of pooled neat urine samples; (ii) a DDA library consisting

of 8 fractions of extracellular vesicles isolated from pooled neat

urine samples; and (iii) a directDIA library generated from the DIA

analysis of all analyzed samples (see Materials and Methods). In

these hybrid libraries, we identified a total of 4,564 and 5,725

protein groups for the Columbia and LCC cohorts, respectively

(Appendix Fig S1E). Applying this robust workflow, we quantified

on average 2,026 (Columbia) and 2,162 (LCC) protein groups per

neat urine sample, in single runs of 45 min and using less than

100 ll of starting material (Dataset EV2). Three outlier samples
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Figure 1. MS-based proteomic analysis of two independent urinary PD cohorts has high depth and precision.

A Overview of the two cohorts and the proteomic workflow. Urine samples comprised of four subject groups ((HC, iPD, NMC and LRRK2 PD) were prepared using
MStern blotting and analyzed by LC-MS/MS using data-independent acquisition (DIA). The sex and total number of subjects per cohort group is shown.

B, C Number of proteins identified and quantified with a 1% false-discovery rate (FDR) in each sample in the Columbia (B) and LCC (C) cohorts. Bars indicate mean and
standard deviation. Arrows point at one subject from the Columbia and two subjects from the LCC cohort that were excluded from further analysis due to low
proteome depth.

D, E Proteins identified in the Columbia (D) and LCC (E) cohort were ranked according to their MS signals, which covered more than five orders of magnitude. The top
ten most abundant, Parkinson-related proteins (green) and Rab GTPases (red) are labeled.

F, G Quantification precision assessed by calculating the intra-plate (F) and inter-plate (G) coefficients of variation (CVs) for the Columbia and LCC cohorts. Proteins
with a CV below 20% and 50% in both cohorts are highlighted in light and dark red, respectively and the fractions of proteins above and below these CV
thresholds are shown. A total of 2,051 proteins were consistently quantified in both cohorts.
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were excluded from further analysis due to low proteome depth

(Fig 1B and C, Dataset EV1). The quantified protein intensities

spanned five orders of magnitude in both cohorts and the top ten

most abundant proteins contributed about half to the total urinary

proteome signal (Fig 1D and E). As observed before (Adachi et al,

2006), the molecular weight distribution spanned a wide range with

many proteins exceeding 100 kDa. More than 2,000 proteins were

in common between the two cohorts. To the best of our knowledge,

this study presents the deepest urinary proteome coverage for

single-run analysis to date, a promising basis for the discovery of

biomarkers.

Data from repeated measurements of individual samples revealed

a high reproducibility with more than 90% of proteins having an

intra- and inter-plate coefficient of variation (CV) below 50% in

both studies and about 60% of proteins with a CV below 20% (Fig 1

F and G, Appendix Fig S2). The intra- and inter-plate variability

within each cohort was even lower (Appendix Fig S2C and I), while

the inter-individual variability was much larger with no protein

having a CV below 20% (Appendix Fig S2F and L). Thus, our

proteomic quantification precision greatly exceeds the biological

variability that we seek to measure.

Quality assessment of urine samples

Pre-analytical variation caused by inconsistent sample processing

and contaminations during sample collection can have a strong

impact on the results and may cause the reporting of incorrect

biomarkers (Geyer et al, 2019). To ensure that the observed

proteome changes are not caused by artifacts related to sample

handling and processing, we assessed each sample for potential

quality issues. To this end, we used a previously reported quality

marker panel to determine the degree of contamination with

erythrocytes (Geyer et al, 2019; Fig 2A and B and Dataset EV3).

Insufficient removal of cells and cellular debris from urine leads to

an increased detection of intracellular proteins with a high sample-

to-sample variability compared to regularly secreted urinary

proteins (Guo et al, 2015). We therefore generated a second urine-

specific quality marker panel to assess the degree of contamination

with cells and cellular debris that could originate from aged,

inflamed, or damaged tissue of the kidneys, bladder, or the urinary

tract (see Materials and Methods). Although urine samples from

both cohorts were cleared by centrifugation following collection to

avoid this systematic bias, our procedure flagged four samples from

the Columbia cohort for potential contamination with cellular

components (Fig 2A and B). Taken together, 6 samples from the

Columbia cohort and 4 samples from the LCC cohort showed

increased intensities of contamination markers and were thus

excluded from further analyses. In addition, we further excluded

one sample from the Columbia cohort, as it clustered far away from

all other samples in a principal component analysis (PCA), likely

indicating pre-analytical variation.

Next, we generated a global correlation map of the urinary

proteome to identify clusters of functional co-regulation as previ-

ously reported for plasma proteome profiling (Albrechtsen et al,

2018). The global correlation map contains pairwise relations of all

urinary proteins across 112 samples from the Columbia cohort.

Unsupervised hierarchical clustering of the pairwise Pearson corre-

lation coefficients revealed four main and several small clusters of

co-regulated proteins (Fig 2C). The largest of these clusters was

chiefly enriched for proteins with the Gene ontology (GO)-term

“extracellular exosome” as well as other significant terms (Dataset

EV4). A more detailed investigation of exosomes, their synthesis

and secretion may thus be interesting in future studies. We also

identified a cluster of highly correlated proteins that was enriched

for the GO terms “immunoglobulin” and “B-cell receptor”, suggest-

ing that these proteins originate from immune cells. The two further

main clusters were enriched for proteins originating from sex-speci-

fic tissues such as the prostate and vagina (Fig 2C; Uhl�en et al,

2015). This shows that sex-dependent anatomical differences

strongly affect the urinary proteome and thus should be considered

as confounding factors. Indeed, a principal component analysis indi-

cated sex as the strongest contributor to the inter-individual vari-

ance of the urinary proteome (Fig 2D and E).

Detection of PD-related proteome alterations in urine

Although PD primarily manifests in the central nervous system

and is characterized by motor impairments, it is known to affect

Table 1. Demographics of all participants

Columbia cohort

HC (LRRK2�/PD�)
(n = 35)

NMC (LRRK2+/PD�)
(n = 16)

iPD (LRRK2�/PD+)
(n = 40)

LLRK2 PD (LRRK2+/PD+)
(n = 28)

Age at collection, mean (SD) 67.5 (10.3) 56.8 (12.7) 64.9 (9.2) 70.7 (8.7)

Age at onset, mean (SD) n/a n/a 57.8 (11) 57.9 (11.3)

Sex (female/male) 17/18 8/8 15/25 11/17

GBA (mut/WT) 7/28 1/15 11/29 3/25

MoCA, mean (SD) 27.5 (2) 28.7 (1.1) 26.9 (1.6) 26.3 (4.5)

UPDRS-III, mean (SD) 1.1 (1.5) 0.8 (1.1) 17.7 (10) 20.6 (8)

LCC cohort

HC (LRRK2�/PD-)
(n = 26)

NMC (LRRK2+/PD�)
(n = 37)

iPD (LRRK2�/PD+)
(n = 29)

LLRK2 PD (LRRK2+/PD+)
(n = 23)

Age at collection, mean (SD) 56.1 (16) 52.1 (12.1) 65 (9.1) 68.4 (5)

Age at onset, mean (SD) n/a n/a 58.4 (9.1) 57.7 (7.6)

Sex (female/male) 15/11 16/21 9/20 13/10
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and potentially initiate in peripheral tissues and is associated with

non-motor symptoms (Poewe, 2008; Jain, 2011). Thus, we asked

if the disease also causes changes of the urinary proteome, which

reflects proteins from both central and peripheral organs. To iden-

tify PD-associated changes in the urine proteome, we first deter-

mined which proteins are differentially present in the urine of PD

A B

C D

E

Figure 2. The large majority of urine samples has high quality and shows sex-specific protein expression.

A, B Histograms of log2 transformed ratios of the summed intensity of the proteins in the respective quality marker panel and the summed intensity of all proteins in
Columbia (A) and LCC (B) cohorts. A sample was flagged for potential contamination and removed from further analysis if the ratio differed more than two
standard deviations from the mean of all samples within the cohort. The proteins in each quality marker panel are listed in Dataset EV3.

C Global correlation map of proteins generated by clustering the Pearson correlation coefficients of all pairwise protein comparisons for the Columbia cohort.
D, E Principal component analysis (PCA) of all subjects based on their urinary proteome profiles. Female subjects are shown in purple and males in green.
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patients compared to the controls, irrespective of their LRRK2

status. To control for confounders, we performed an analysis of

covariance (ANCOVA) considering sex, age at sample collection,

LRRK2 status, and GBA status (only available for the Columbia

cohort) as confounding factors. Applying a 5% false-discovery

rate (FDR) cutoff, we identified 361 proteins that displayed signif-

icantly different levels in PD patients when compared to controls

(298 in Columbia cohort and 73 in LCC cohort) (Dataset EV5).

The relatively large number of regulated proteins is in agreement

with previous reports that the majority of PD patients suffers

from urinary tract dysfunction (Yeo et al, 2012). The smaller

number of significantly different proteins in the LCC cohort as

well as the relatively small overlap between the cohorts could be

explained by a less stringent sample collection protocol and

worse age-matching in the LCC cohort. The log2 fold-changes

between PD patients and non-diseased individuals show a good

correlation between the two cohorts (Pearson r = 0.65) (Fig 3A),

reflecting both reproducibility of the applied proteomic work-

flow and pathobiological consistency. The mean fold-changes of

the 330 PD-associated proteins that were quantified in both

cohorts were larger for the Columbia cohort (Columbia: 1.43

(up) and 0.49 (down) vs. LCC: 1.27 (up) and 0.75 (down)).

Furthermore, 90% of the PD-associated proteins were detected

with at least two peptides and quantified with CVs below 50%

(Appendix Fig S3A).

Protein misfolding is known to be involved in many neurodegen-

erative conditions including PD (Cook et al, 2012). Interestingly,

some of the proteins exhibiting the largest differential levels

between the urine of controls vs. PD patients include proteins assist-

ing other proteins in folding, such as peptidyl-prolyl cis-trans

isomerase B (PPIB) and T-complex protein 1 subunit gamma (CCT3)

(Fig 3A). We also identified two of the eight human canonical

ribonucleases (RNASE1 and RNASE2) to be PD-associated in both

cohorts (Fig 3A). The levels of the four apolipoproteins APOA1,

APOA2, APOA4, and APOC1 were also elevated in PD patients

(Fig 3A). While they show a similar trend in both cohorts, they

reached statistical significance only in the Columbia cohort, corrob-

orating that this cohort has greater power to detect PD-associated

changes.

Next, we analyzed if any GO terms assigned to the 361 PD-asso-

ciated proteins were significantly enriched compared to the urinary

proteome (Fig 3B). This analysis examines if PD affects individual

cellular compartments and particular biological signaling networks

in urine. The term “bone development” was significantly enriched,

in line with previous findings that PD patients are at increased risk

for osteoporosis and osteopenia (Torsney et al, 2014). In summary,

we observed disease-associated protein signatures with a high corre-

lation between the two independent cohorts and identified promis-

ing candidates that could serve as biomarkers for PD and provide

mechanistic insights into disease pathogenesis.

A B

Figure 3. PD affects the urinary proteome.

A Correlations of mean fold-changes of the proteins changing PD-dependently in the Columbia and LCC cohorts. Only proteins quantified in both cohorts are shown
(n = 330). The colors match to the GO terms shown in (B). Proteins overlapping between the two cohorts are labeled with their name.

B Fisher exact test to identify significantly enriched GO terms in the PD-associated proteins in urine. Importantly, the enrichment score of the Fisher exact test does not
indicate if the proteins were up- or downregulated in PD patients but rather that the regulated proteins—independent of the directionality—compared to the total
urinary proteome are associated with the enriched term. All GO terms that were significant in both cohorts are displayed (FDR < 5%).
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Pathogenic LRRK2-dependent changes are linked to lysosomes
and glycosphingolipid metabolism

Encouraged by the observation of disease-dependent proteome

changes in urine, we next asked if the urinary proteome is altered

by the presence of the LRRK2 G2019S mutation. We again applied

an ANCOVA analysis with sex, age at sample collection, PD status,

and GBA status (only available for the Columbia cohort) as

confounding factors and compared the proteomes between G2019S

and wild-type allele carriers. Applying an FDR of 5%, the mutation

altered the abundance of 237 proteins (Columbia: 166, LCC: 104)

(Fig 4A and Dataset EV5). A subset of 33 proteins differed signifi-

cantly in G2019S carriers in both cohorts and all these proteins were

upregulated in pathogenic LRRK2 carriers. A pairwise comparison of

the four subject groups (HC, NMC, iPD, and LRRK2 PD) using a

Student t-test confirmed that the abundance of the overlapping

proteins changed in a G2019S-dependent manner but was unaf-

fected by the PD status (Fig 4B).

In total, 237 LRRK2 status-associated proteins were quantified in

both cohorts and the fold-changes of these were similar between the

two cohorts (Pearson correlation: 0.34, Fig 4C). The lower correla-

tion between the studies compared to the PD-associated proteins

could be explained by the different distribution of PD+ and PD� indi-

viduals in the two cohorts, which is only corrected for in the applied

ANCOVA analysis but not in this Pearson correlation analysis. The

effect sizes of the LRRK2-associated proteins were slightly larger for

the Columbia cohort (Columbia: 1.43 (up) and 0.76 (down) vs. LCC:

1.39 (up) and 0.89 (down)). Interestingly, one of the proteins exhibit-

ing the largest increase in LRRK2 G2019S carriers in both cohorts was

a phosphatase, the intestinal-type alkaline phosphatase (ALPI). As

for the proteins that changed dependent on PD disease status, most

LRRK2 status-associated proteins were detected with at least two

peptides and quantified with CVs below 50% (Appendix Fig S3B).

A GO term analysis revealed strong enrichment of proteins asso-

ciated with lysosome-related terms such as “autolysosome”, “lyso-

some”, “lysosomal lumen”, “azurophil granule lumen” and

“lysosomal membrane” as well as “glycosphingolipid metabolic

processes” in LRRK2 G2019S carriers in both cohorts (Fig 4D).

Among the proteins associated with the lysosome-related GO terms

were multiple members of the cathepsin family including cathepsins

A, B, C, D, H, L, O, S, and Z. The widely used lysosomal marker

proteins, LAMP1 and LAMP2, were also significantly altered in

LRRK2 carriers in the LCC cohort, while LAMP3 was significantly

changed in the Columbia cohort. In total, 13 proteins were associ-

ated with the GO term “sphingolipid metabolic process”, most of

them upregulated in LRRK2 G2019S carriers. Among them were

multiple lysosomal enzymes including GCase (encoded by GBA),

galactocerebrosidase (GALC), sphingomyelin phosphodiesterase

(SMPD1), and the beta-hexosaminidase subunits alpha and beta

(HEXA and HEXB).

Heterozygous pathogenic mutations in GBA are one of the most

common PD risk factors while homozygous loss of function muta-

tions of the same protein causes the lysosomal storage disorder

(LSD) Gaucher’s disease. Past studies have described increased

GCase activity in LRRK2-deficient mice and decreased GBA activity

in LRRK2 G2019S carrier neurons (Ferrazza et al, 2016; Ysselstein

et al, 2019). Additionally, it has been reported that PD patients with

mutations in both proteins develop symptoms at a younger age

compared to patients with only one affected gene (Duran et al, 2013;

Spitz et al, 2015; Yahalom et al, 2019). However, despite these

reports, it remained unclear whether mutations in GBA and LRRK2

contribute to the pathogenesis of PD via common pathways. Partici-

pants in the Columbia cohort were sequenced for mutations in GBA

(Alcalay et al, 2015) and 22 individuals were found to carry a patho-

genic mutation in this locus. To determine which proteins were

changed specifically in carriers of GBA variants, we performed an

ANCOVA analysis with sex, age at sample collection, PD status, and

LRRK2 status as confounding factors. Using an FDR of 5%, we found

that levels of 74 proteins were affected by GBA (Fig 4E and Dataset

EV5). Interestingly, only Intercellular adhesion molecule 1 (ICAM1),

Adenosylhomocysteinase (AHCY), and Stomatin (STOM) were

affected by pathogenic mutations in both LRRK2 and GBA, suggesting

that the two mutations largely affect distinct pathways. Furthermore,

the GBA- and LRRK2-dependent protein fold-changes were poorly

correlated (Pearson r = 0.21) (Fig 4F) but future well-powered stud-

ies on GBA cohorts are needed to firm up the data. Of note, most

proteins associated with the GO term “glycosphingolipid metabolic

process” were increased in LRRK2 G2019S carriers but decreased in

pathogenic GBA carriers, most notably GM2 activator (GM2A).

Together, we identified pathogenic mutant LRRK2-dependent

protein signatures with a high correlation between the two indepen-

dent cohorts. The LRRK2 mutational status-dependent changes of

▸Figure 4. Pathogenic LRRK2-dependent lysosomal dysregulation is reflected in the urinary proteome and distinct from pathogenic GBA-induced alterations.

A Proteins that differ significantly between pathogenic LRRK2 carriers and controls using an ANCOVA analysis with sex, age, PD status and GBA status as confounders
and an FDR of 5%.

B Mean fold-changes for each of the 33 proteins that were LRRK2-dependently regulated in both cohorts using a pairwise t-test comparing the four subgroups (HC,
NMC, iPD and LRRK2 PD).

C Correlation of mean fold-changes of the proteins changing LRRK2-dependently in the Columbia and LCC cohorts. Only proteins identified in both cohorts are shown
(n = 237). The colors match to the GO terms shown in (D). All proteins associated with the GO term “glycosphingolipid metabolic process” labeled in purple are also
associated with the lysosomal-related GO terms. Proteins overlapping between the two cohorts are labeled with their name.

D Fisher exact test was performed to identify significantly enriched GO terms in the LRRK2-dependently regulated proteins in urine. All GO terms that were significant
in either cohort are displayed (FDR < 5%).

E Proteins that differ significantly between pathogenic GBA carriers and controls or between pathogenic LRRK2 carriers and controls using an ANCOVA analysis with sex,
age, PD status and LRRK2/GBA status as confounders and an FDR of 5%. In total, 237 proteins were differentially expressed in these two comparisons with 166 and 74
regulated proteins in the LRRK2 carriers and GBA carriers, respectively, only three of which were common between both mutations.

F Correlation of mean fold-changes of the proteins changing LRRK2-dependently and GBA-dependently (n = 237) in the Columbia cohort. Carriers of pathogenic
variants in both GBA and LRRK2 were excluded from the analysis. The colors match to the GO terms shown in (D).
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the urinary proteome include lysosomal proteins that could serve as

biomarkers to stratify subjects with pathogenic LRRK2.

Correlation of proteome profiles with clinical parameters

Given that clinical parameters, including disease severity scores,

were available for the Columbia cohort, we were interested in

exploring whether any of these clinical parameters correlate with

proteomic changes we detected. We were especially interested in

the cognitive capabilities of the participants as evaluated using the

Montreal Cognitive Assessment (MoCA) test, and the motor perfor-

mance as assessed using the Unified Parkinson’s Disease Rating

Scale part III (UPDRS-III). Within the Columbia cohort, MoCA scores

ranged from 8 to 30, on a scale from 0, for most severe cognitive

impairment, to 30, for no measurable cognitive impairment. We

observed that two proteins, Tenascin-R (TNR) and Furin (FURIN),

A B

C

D

E F

Figure 4.
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showed a strong negative correlation with the MoCA score in PD

patients (TNR Pearson r: �0.66; FURIN r: �0.65; P < 10�7 for both),

mainly driven by LRRK2 G2019S carriers (TNR r: �0.77; FURIN r:

�0.78; P < 10�5 for both) (Fig 5A and Appendix Fig S4). Interest-

ingly, neither TNR nor FURIN was correlated with the age at sample

collection in PD patients (TNR Pearson r: 0.19; FURIN r: 0.16).

Furthermore, neither of the two proteins was significantly regulated

in the urinary proteomes of PD patients. When similar type of analy-

sis was done with UPDRS-III scores, which ranged from 0 to 38 in

the Columbia cohort (on a scale that may range from 0 for normal

to a maximum possible score of 108 for most severely affected

motor function), we observed that immunoglobulin kappa variable

6-21 (IGKV6-21), was the highest correlated protein in PD patients

(r: 0.54, P < 10�5; Fig 5B). This protein also exhibited one of the

A

B

Figure 5. Correlations with clinical parameters.

A Pearson correlation scores and associated P-values [�log10] of all protein intensities with the MoCA total score. Either all PD patients (left), iPD patients (middle)
or LRRK2 PD patients (right) were included in the analysis. Significantly correlated proteins with an FDR of 5% after Benjamini–Hochberg correction are highlighted
in red.

B Pearson correlation scores and associated P-values [�log10] of all protein intensities with the UPDRS-III score. Either all PD patients (left), iPD patients (middle) or
LRRK2 PD patients (right) were included. Significantly correlated proteins with an FDR of 5% after Benjamini–Hochberg correction are highlighted in red.
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highest fold-changes in abundance when comparing urine of PD

patients with non-diseased individuals (Fig 3A). Of note, the corre-

lation between UPDRS-III scores and levels of IGKV6-21 was mainly

driven by iPD patients (r: 0.68; P < 10�5) and much weaker in

LRRK2 G2019S PD patients (r: 0.36; not significant; Fig 5B). All

correlation scores, P- and q-values can be found in Dataset EV6.

Collectively, this analysis suggests that iPD and LRRK2 G2019S

patients could be stratified based on the differences between MoCA

and UPDRS-III score correlations with different urine proteins.

Machine learning-based classification of urinary proteomes

Finally, we assessed how well machine learning models can

discriminate between PD patients and non-diseased individuals,

between LRRK2 G2019S and wild-type allele carriers, and between

NMC individuals and LRRK2 G2019S patients based on the acquired

urinary proteome profiles. Since the accuracy of the model largely

depends on the number of samples, we combined all samples from

the Columbia and LCC cohorts for these analyses. We first selected

and ranked which protein features to use in the machine learning

model by employing a decision tree. To classify individuals as

having PD or not, the decision tree selected the 15 most important

features of the PD� vs. PD+ urinary proteomes, with the intensity of

PPIB, one of the proteins that displayed the largest difference in

abundance when PD samples were compared to the controls

(Fig 3A), being on top of the list (Appendix Fig S5A). Using these

proteins, we trained an XGBoost model, a commonly applied algo-

rithm for gradient boosting, a machine learning technique that is

used to build robust predictive models based on ensembles of

weaker predictions, such as decision trees. Samples were cross-vali-

dated by applying a stratified 4-fold split. This was repeated

(n = 15) with shuffling the dataset to have a total of 60 train/test

splits to achieve a robust estimate of model performance. Each time,

we determined a receiver operating characteristic (ROC) curve and

found the mean area under the curve (AUC), which is often used to

assess the performance of a model, to be 0.84 � 0.05 (Fig 6A). On

average, we correctly classified 91 out of 117 PD patients and 77 out

of 106 controls in the test sets (Fig 6B). Accordingly, the machine

learning model reached a sensitivity of 78% and a specificity of

73%. When we trained the model on the one cohort and tested it on

the other cohort, we obtained AUCs of 0.86 or 0.72, further demon-

strating the robustness of the model (Fig 6C).

We next used the same machine learning methods to classify

G2019S and wild-type LRRK2 carriers using the same strategy as

described above. The decision tree selected the 15 most important

features, with the intensity of ENPEP being the most important one

(Fig 4A; Appendix Fig S5B). Using these proteins and the XGBoost

algorithm, we obtained a mean AUC of the ROC curves of

0.87 � 0.04 (Fig 6D). For the test sets, we could correctly classify

73 out of the 99 LRRK2 G2019S carriers and 103 out of the 123

wild-type allele carriers, corresponding to a 74% sensitivity and

84% specificity (Fig 6E). When we trained the model on one of the

cohorts and tested it on the other, we obtained AUCs of 0.76 or

0.80 (Fig 6F). Additionally, we trained the model on all individuals

with a known LRRK2 status and classified the sample from the

Columbia cohort with an unknown LRRK2 status with an 87%

probability to be wild-type LRRK2. After we had finished this

machine learning modeling, the mutational status of this individual

was determined as wild-type LRRK2, further verifying the machine

learning model.

Encouraged by these results, we wanted to see how well machine

learning can discriminate LRRK2+ PD patients from NMCs that also

carry a LRRK2 mutation and are at increased risk of developing the

disease. Using a decision tree, we selected seven proteins for train-

ing the model (Appendix Fig S5C). Interestingly, VGF, a neuro-

trophic factor, was identified as the most important feature. When

using these features to train a classifier with our cross-validation

scheme, the obtained mean AUC of the ROC curve was 0.94 � 0.05

and the obtained sensitivity and specificity were both 88% (Fig 6G

and H). Using samples from only one cohort as a training set and

applying the model to the other cohort resulted in AUCs of 0.93 and

0.74 (Fig 6I). Taken together, machine learning allowed us to clas-

sify the PD and LRRK2 states with high specificities and sensitivities.

Discussion

The pathophysiology of PD leads to progressive decline of motor

function and results in numerous quality of life issues for patients

and their families, and inevitably leads to death within 7 to 14 years

from the initial diagnosis. The majority of previous PD biomarker

discovery and validation efforts have focused on CSF, serum, and

blood (Chen-Plotkin et al, 2018). Additional strategies included

targeted monitoring of a-synuclein levels, given the known relation-

ship between a-synuclein accumulation and PD progression (Fields

et al, 2019). To address this problem, we developed a shotgun

proteomics workflow for urinary proteome profiling. We chose to

focus on urine given the non-invasive nature of obtaining clinical

samples, which is a major advantage when developing a strategy

that can be used not only for diagnostic and prognostic purposes,

but for long-term disease progression and treatment response moni-

toring. Additionally, instead of focusing on a single biomarker and/

or a subset of molecular entities, our shotgun proteomics approach

provides a multiparameter global map of the disease state. We

previously showed that this strategy can yield powerful, data-driven

descriptors of a disease (Geyer et al, 2016b; Niu et al, 2019; Bader

et al, 2020), and we now confirm, for the first time, that this also

works for urinary proteome analysis in the context of a complex

neurodegenerative disease, such as PD.

Our quantitative shotgun proteomics workflow represents a

sensitive and scalable approach for rapid analysis of a large number

of samples. Applying this workflow to more than 200 urine samples

from two independent cohorts allowed us to precisely quantify on

average more than 2,000 proteins per sample while using minimal

sample amounts of less than 100 ll. Our approach successfully

determined proteins with abundances that varied over more than

five orders of magnitude and quantified more than 1,200 proteins

with a CV below 20% across the two cohorts, highlighting the high

depth and precision of our study. Moreover, the observed variability

between samples was much smaller than the biological variability

between subjects, further illustrating the quantitative robustness of

our workflow.

Another factor contributing to the quality of the urinary

proteome dataset reported here is the composition of the cohorts we

analyzed. The cohorts included two types of controls, the healthy

controls as well as asymptomatic individuals that are carriers of PD-
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Figure 6. Machine learning-based classification of PD and LRRK2 status.

A Receiver operating characteristic (ROC) curve for the XGBoost-based model to classify PD+ vs. PD� individuals. Random performance is indicated by the dotted
diagonal line. The gray area represents the standard deviation from the mean ROC curve. The blue lines show the values for a total of 15 repeats with four stratified
train-test splits.

B Confusion matrix showing the model performance for classifying PD+ vs. PD� individuals. Numbers represent the mean number from 15 repeats of cross-validation
with four stratified train-test splits.

C ROC curve for the XGBoost-based model when trained on one cohort and tested on the other cohort. Random performance is indicated by the dotted diagonal line.
D Same as (A) but for classification of LRRK2 G2019S vs. LRRK2 WT carriers.
E Same as (B) but for classification of LRRK2 G2019S vs. LRRK2 WT carriers.
F Same as (C) but for classification of LRRK2 G2019S vs. LRRK2 WT carriers.
G Same as (A) but for classification of PD+ vs. PD� in LRRK2 G2019S carriers.
H Same as (B) but for classification of PD+ vs. PD� in LRRK2 G2019S carriers.
I Same as (C) but for classification of PD+ vs. PD� in LRRK2 G2019S carriers.
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associated mutation G2019S LRRK2. The cohorts also included PD

patients with and without the mutation, and patients of both sexes,

thus allowing for different types of comparisons. For example, the

global correlation map and PCA analysis showed that the sex of an

individual has a dominant effect on the urinary proteome. This is in

line with basic physiology and previous reports (Shao et al, 2019)

but highlights the importance of incorporating sex as a confounding

factor for statistical analyses. This is further illustrated by the fact

that 42 and 12% of the proteins with differential abundance in PD

patients vs. controls, as well as 35 and 14% of the proteins that

exhibit different abundance in a LRRK2 mutational status-dependent

manner also significantly differed between the sexes in the

Columbia and LCC cohorts, respectively.

Applying our “rectangular” strategy for biomarker discovery

(Geyer et al, 2017), we discovered 361 and 237 significantly altered

proteins in PD patients and pathogenic LRRK2 carriers, respectively.

The observed overlap of proteins exhibiting significantly perturbed

levels in the two independent cohorts confirms that valuable infor-

mation can be inferred from the urinary proteome for neurodegener-

ative diseases. The limited number of samples for each of the four

subject groups as well as demographic and ethnic heterogeneity

between them are limitations of the present study. However, we

note the scalability of our workflow, which will allow its application

to larger cohorts with more comprehensive genetic and clinical

information. This extension of our work will be important to further

validate our results and to discover additional biomarker candidates

with improved statistical power. Building up on our data and further

validation studies, specific targeted clinical assays could be devel-

oped for clinical use (Karayel et al, 2020).

Our data analysis led to several interesting observations that

might suggest opportunities for follow up. Here, we will briefly

discuss only a small number of such examples. For those interested

in more in-depth data mining, we made our datasets available via a

publicly accessible depository (see Materials and Methods for acces-

sion numbers). An interesting insight that emerged from the GO

term analysis of PD patient vs. control proteomes is that proteins

associated with “bone development” are regulated in PD patients.

The enzyme PPIB was significantly upregulated in PD patients in

both cohorts. This cyclophilin assists the folding of type I collagen

and can protect cells against MPP+-induced cell death in a PD cell

culture model (Oh et al, 2016). Inhibitors of the closely related

family member cyclophilin D (CypD) are considered as therapeutic

agents against several neurodegenerative diseases including PD

(Fayaz et al, 2015). Most other proteins associated with the GO term

“bone development” were downregulated in PD patients, in line

with recent findings that PD patients frequently suffer from osteo-

porosis and osteopenia (Torsney et al, 2014; Handa et al, 2019).

Going forward, it would be important to examine the relationship

between PD progression and bone health more closely, as this

connection is currently underexplored.

Another enriched term was “growth factor activity”, although

none of the proteins associated with this term was significantly

regulated in both cohorts. Growth factors and particularly neuro-

trophic factors have gained strong interest as therapeutic agents in

Parkinson’s disease but so far have not produced convincing clinical

benefits (Paul & Sullivan, 2019). The neurosecretory protein VGF

was strongly decreased in PD patients in both cohorts (Columbia:

0.24, LCC: 0.54) but only reached statistical significance in the

better-controlled Columbia cohort. VGF is synthesized as a prohor-

mone and proteolytically processed to various biologically active

peptides. In this study, we identified peptides covering most of the

VGF sequence, including sequences contained in the neuroen-

docrine regulatory peptide-1. However, the applied tryptic digestion

complicates a direct link to the endogenous hormone peptides. VGF

is exclusively synthesized and secreted by neuronal and neuroen-

docrine tissues. In the CNS, VGF promotes neurite growth and exhi-

bits neuroprotective activity, while it also regulates energy

homeostasis in peripheral tissues. Gene expression of VGF in the

cortex (Henderson-Smith et al, 2016) and peptides derived from this

gene are reduced in post-mortem parietal brain cortex and plasma

from PD patients (Cocco et al, 2010; Cocco et al, 2020). Further-

more, VGF has been suggested as a biomarker in CSF for Alzhei-

mer’s disease (AD) and Amyotrophic lateral sclerosis (ALS) and its

expression was reduced in the CSF of AD and ALS patients

compared to controls (Carrette et al, 2003; Pasinetti et al, 2006).

We also identified several apolipoproteins - the major proteina-

ceous constituent of lipoproteins - to be significantly upregulated in

PD patients in the Columbia cohort. They have been linked to

neurodegenerative disorders including Alzheimer disease, including

in our recent proteomic study of CSF (Bader et al, 2020). APOE vari-

ants were shown to exhibit neuroprotective activity (reviewed in

(Emamzadeh, 2017)). APOA1 is the major protein component of

plasma high-density lipoprotein and its low levels in CSF and

plasma have been reported as a potential PD biomarker (Wang et al,

2010; Qiang et al, 2013; Swanson et al, 2015). While APOE and

ApoA1 are the most abundant apolipoproteins in the CSF and highly

enriched in the brain (Borghini et al, 1995; Koch et al, 2001),

APOC1—a less-abundant brain apolipoprotein—was implicated in

Alzheimer disease although its regulation and possible role is poorly

understood (Petit-Turcotte et al, 2001).

In another illustrative example, we analyzed proteomic dif-

ferences between patients with and without a major inherited muta-

tion associated with familial PD: LRRK2 G2019S. Lysosomal

dysregulation and associated a-synuclein aggregation appear to be a

central event in the pathogenesis of PD (Alessi & Sammler, 2018)

and LRRK2, through its regulation of the endolysosomal pathways,

is a key player in this mechanism (Henry et al, 2015; Roosen &

Cookson, 2016; Vidyadhara et al, 2019; Kuwahara & Iwatsubo,

2020). Interestingly, the LRRK2-dependent signature in the urinary

proteome seemed to be more consistent than the PD-dependent

signature, as indicated by the larger overlap of 33 vs. 10 proteins

between the two cohorts. This may also be explained by the fact

that the disease diagnosis and thus the classification of individuals

in PD� and PD+ is based on multiple clinical criteria, resulting in

more heterogeneous populations than classification in LRRK2� and

LRRK2+ based on sequencing of the locus. This suggests that the

genetic mutation of LRRK2 not only manifests in the central nervous

systems but also dysregulates multiple pathways in distal organs

such as the bladder and kidney, where LRRK2 is actually highly

expressed (Biskup et al, 2007). Our results demonstrate that urine of

pathogenic LRRK2 carriers strongly reflects lysosomal dysregulation

associated with increase in LRRK2 activity (Alessi & Sammler,

2018). These major proteome changes are in agreement with a

previous study that observed more than 2,000 proteins to be

affected by pathogenic LRRK2 (Connor-Robson et al, 2019). One of

the strongest upregulated proteins in LRRK2 G2019S carriers was
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the alkaline phosphatase ALPI. We suggest that this enzyme may

counteract the hyperactive kinase by as yet undiscovered feedback

mechanisms. Interestingly, knockdown of ALPI has been shown to

decrease both LRRK2 levels and activity in cells (Berndsen et al,

2019). We also found several lysosomal proteins including a- and b-
subunit of b-hexosaminidase A (HEXA and HEXB), GM2A, and

GCase, whose genes are associated with LSDs, to be upregulated in

LRRK2 G2019S carriers in both cohorts. Mutations in many LSD

genes have been associated with PD, suggesting common patho-

genic mechanisms underlie both diseases. The GO term “glycosph-

ingolipid metabolic process” was enriched among LRRK2-regulated

proteins, in agreement with increased interest in understanding how

sphingolipids contribute to PD that stems from the fact that several

PD-associated genes including GBA are linked to their metabolism

(Lin et al, 2019; Plotegher et al, 2019). Ceramide levels are increased

in LRRK2-deficient mouse brains and this decrease is regulated by

GBA (Ferrazza et al, 2016). It still remains unclear how the disrup-

tion of sphingolipid metabolism may result in PD-associated

neurodegeneration or if LRRK2 directly or indirectly regulates this

process. Our data suggest that pathogenic mutations in GBA and

LRRK2 mainly affect distinct regulatory networks, as only three

proteins were significantly altered in common by mutations in both

genes. However, further studies on larger GBA cohorts are needed

to confirm and extend our findings.

One of the cohorts we analyzed (Columbia) included information

on clinical scores of cognitive and motor performances. This allowed

us to correlate proteomic changes to clinical score, thus revealing that

TNR and FURIN levels were strongly correlated with higher cognitive

impairment. FURIN is a protease and involved in NMDA-induced

neuronal injury (Yamada et al, 2018). Furthermore, its homologue in

the fruit fly, Furin1, has been reported to be a translational target of

pathogenic LRRK2 and to be involved in neurotoxicity (Maksoud

et al, 2019). TNR is a neural extracellular matrix protein exclusively

expressed in the brain. It is involved in neurogenesis (Xu et al, 2014)

and extracellular matrix aggregates in the brain called perineural nets

(Morawski et al, 2014). Of note, rare TNR variants have also been

associated with familial PD (Farlow et al, 2016). Interestingly,

IGKV6-21 was highly upregulated in PD patients and also strongly

correlated with the UPDRS-III score. Although the underlying biology

is unclear, the association with both PD risk and severity makes this

V region a promising biomarker candidate to pursue in future studies.

To extend utility of our datasets, we developed a machine learn-

ing model for stratifying PD patients and LRRK2 G2019S carriers with

high sensitivities and specificities. Importantly, the machine learning

model excelled in classifying the PD status in LRRK2 G2019S carriers.

This is of high interest, because although these carriers are at an

increased risk of developing PD, there is no predictive marker to

determine whether or not and when a mutation carrier develops the

disease. Given the performance of the machine learning model, VGF,

LTF, CELA3A, TUBB4B, and SOD2 are promising candidates as

predictive markers to early indicate disease development.

In summary, we have demonstrated that a distal body fluid like

urine contains brain-specific proteins and can inform about the

disease and mutation status in a neurodegenerative disease. Our

urinary proteomics workflow is relatively straightforward, readily

scalable, and thus easily applicable to larger and more powerful

cohorts. It would be important to also apply it to longitudinal data

to confirm increased levels of PPIB and IGKV6-21 in PD patients and

VGF as a potential indicator for disease manifestation in LRRK2

G2019S carriers but also identify new biomarkers for PD risk and

disease progression in idiopathic and genetic forms of PD. Our

results demonstrate that urinary proteome profiling enables the

discovery of better biomarkers, which could have a major impact on

important aspects of disease management: (i) a diagnostic

biomarker will enable early and objective diagnosis of PD, (ii) a

prognostic biomarker will provide information about the progres-

sion of the disease, and (iii) predictive and treatment response

biomarkers will allow to monitor whether and how the patients

respond to a therapy. Reliable biomarkers assessing LRRK2 activity

can also aid with monitoring compliance of LRRK2 kinase inhibitors

and treatment efficacy, early detection of non-manifesting carriers

to prevent disease onset and stratify idiopathic PD patients who

could benefit from LRRK2-based therapies.

Materials and Methods

Study cohorts

In this study, urine samples from two independent cross- sectional

cohorts were analyzed. Both studies were approved by local institu-

tional review boards, and each participant signed an informed

consent. All experiments conformed to the principles set out in the

WMA Declaration of Helsinki and the Department of Health and

Human Services Belmont Report.

The first cohort was recruited at Columbia University Irving

Medical Center (Columbia cohort) and its participants donated urine

under a MJFF-funded LRRK2 biomarker project from March 2016 to

April 2017. This cohort contained 35 healthy individuals without

pathogenic LRRK2 mutation (HC), 16 non-manifesting carriers of

the LRRK2 G2019S mutation (NMC), 40 idiopathic PD patients with-

out pathogenic LRRK2 mutation (iPD) and 28 PD patients with the

pathogenic LRRK2 G2019S mutation (LRRK2 PD) and 1 PD patient

with an unknown mutation status of LRRK2. Motor performance

was evaluated using the Unified Parkinson’s Disease Rating Scale

part III (UPDRS-III), and cognitive functioning was assessed using

the Montreal Cognitive Assessment (MoCA) test. Genotyping for

LRRK2 G2019S and GBA mutations was conducted as previously

described (Alcalay et al, 2015).

To confirm findings from the Columbia cohort, urine from a

second cohort consisting of 115 biobanked urine samples from the

Michael J. Fox Foundation for Parkinson’s Research (MJFF)-funded

LRRK2 Cohort Consortium (LCC) was analyzed. The cohort used in

this study was an exploratory subset of a larger cohort and

contained 26 healthy individuals without pathogenic LRRK2 muta-

tion (HC), 37 non-manifesting carriers of the LRRK2 G2019S muta-

tion (NMC), 29 idiopathic PD patients without pathogenic LRRK2

mutation (iPD), and 23 PD patients with the pathogenic LRRK2

G2019S mutation. UPDRS-III and MoCA scores were not available

for subjects from the LCC cohort.

Quality assessment

To generate the urine-specific quality marker panel, we recruited

three volunteers from within the Department of Proteomics and

Signal Transduction at the Max Planck Institute of Biochemistry
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who kindly donated 10 ml of urine at three different time points

during a day and provided a written informed consent, with prior

approval of the ethics committee of the Max Planck Society.

Following the collection, urinary samples were centrifuged at

2000g for 10 min, supernatants were harvested, and pellets were

resuspended in 100 ll of urea sample solution. 100 ll of each super-

natant and the entire 100 ll of the resuspended pellets were used

for sample preparation as described below. A sample was flagged

for potential contamination if the summed intensity of all proteins

in the respective quality marker panel differed more than 2 standard

deviations from the mean of all samples within the cohort.

Sample preparation

The undiluted neat urine as well as the cleared and pelleted urine

samples for the urine-specific quality marker panel were prepared

using MStern Blot protocol as described previously (Berger et al,

2015). Briefly, 100 ll of urine was first diluted in 300 ll of urea

sample solution (8 M urea in 50 mM ammonium bicarbonate

(ABC)) and subsequently mixed with 30 ll of 150 mM dithiothreitol

(DTT) solution (150 mM DTT, 8 M urea, 50 mM ABC) in a 96-well

plate. The resulting solution was incubated for 20 min at room

temperature. Reduced cysteine side chains were alkylated by adding

30 lL of iodoacetamide (IAA) solution (700 mM IAA, 8 M urea,

50 mM ABC) and incubated for 20 min in the dark. During incuba-

tion, each well of the 96-well PVDF membrane plates (MSIPS4510,

Merck Millipore) was activated and equilibrated with 150 ll of 70%
ethanol/water and urea sample solution, respectively. The urine

samples were transferred through the PVDF membranes using a

vacuum manifold (MSVMHTS00, Merck Millipore). Adsorbed

proteins were washed two times with 150 ll of 50 mm ABC. Diges-

tion was performed at 37°C for 2 hours by adding 100 ll digestion
buffer (5% v/v acetonitrile (ACN)/50 mm ABC) containing 0.35 lg
per well of each protease trypsin and LysC. After incubation in a

humidified incubator, the resulting peptides were collected by

applying vacuum and remaining peptides were eluted twice with

75 ll of 40%/0.1%/59.9% (v/v) acetonitrile/formic acid/water.

The pooled peptide solutions were dried in a vacuum centrifuge.

Peptides resuspended in 0.1% trifluoroacetic acid (TFA) were

desalted on C18 StageTips as described in (Kulak et al, 2014). The

StageTips were centrifuged at 1,000g for washing with 0.1% TFA

and elution with 80% ACN/0.1% TFA. The eluate was evaporated

to dryness using a vacuum centrifuge and peptides were resus-

pended in 10µl buffer A* (2% ACN/0.1% TFA and stored at �20°C.

Samples were thawed shortly before mass spectrometric analysis

and shaken for 2 min at 2,000 rpm (thermomixer C, Eppendorf).

Peptide concentrations were measured optically at 280 nm (Nan-

odrop 2000, Thermo Scientific) and subsequently equalized using

buffer A*. 500ng peptide was subjected to LC-MS/MS analysis.

Cohort-specific libraries for data-independent analyses were

generated by pooling of 25 randomly selected samples of each

cohort. Sample pools were fractionated into 24 fractions each by

high pH (pH 10) reversed-phase chromatography as described

earlier (Kulak et al, 2017). Fractions were concatenated automati-

cally by shifting the collection tube every 120 s and subsequently

dried in a vacuum centrifuge and resuspended in buffer A*.

To increase the depth of each library, extracellular vesicles (EV)

were isolated from pooled urine samples of each cohort by ultra-

centrifugation as described earlier(Fraser et al, 2016). Briefly, 8.5 ml

of 6 urine samples per group (LRRK2�/PD�, LRRK2+/PD�, LRRK2�/
PD+, and LRRK2+/PD+) were pooled and centrifuged at 10,000 g for

30 min at 4°C and supernatant was transferred and then centrifuged

again at 100,000 g for 1 h at 4°C. Supernatants were discarded and

pellets were washed by adding 30 ml PBS and centrifugation at

100,000 g for 1 h at 4°C. Supernatant was discarded and pellets

were resuspended in 100 µl of a sodium deoxycholate-based lysis

buffer containing chloroacetamide (PreOmics GmbH) and heated to

95°C for 10 min for reduction and alkylation. After cooling to room

temperature, 0.75 µg of each protease trypsin and LysC were added

to each sample and digestion was performed at 37°C overnight.

Peptides were desalted with SDB-RPS (styrenedivinylbenzene-

reverse phase sulfonate) StageTips. Samples were mixed with 5

volumes of 1% TFA/isopropanol for loading on StageTips and

subsequently washed once with 1%TFA/isopropanol and once with

0.2% TFA as described earlier (Kulak et al, 2014). Peptides were

eluted using 80%/5% ACN/ammonium hydroxide. The eluate was

completely dried using a vacuum centrifuge and resuspended in

0.1% formic acid. Peptides were then separated into 8 fractions by

high pH reversed-phase chromatography as described above for the

libraries.

To determine coefficients of variation for the Columbia cohort,

urine from five donors in triplicates on one plate were subjected to

sample preparation (intra-plate) and this was repeated on three dif-

ferent plates (inter-plate). For the LCC cohort, urine from three

donors in duplicates on one plate was subjected to sample prepara-

tion (intra-plate). Urine from nine other subjects were prepared on

two different plates (inter-plate).

LC-MS/MS analysis

LC-MS/MS analysis was performed on an EASY-nLC 1,200 coupled

to a Q Exactive HF-X Orbitrap mass spectrometer via a nano-elec-

trospray ion source (all Thermo Fisher Scientific). Purified peptides

were separated at 60 °C on 50cm columns with an inner diameter

of 75µm packed in-house with ReproSil-Pur C18-AQ 1.9µm resin

(Dr.Maisch GmbH). Mobile phases A and B were 99.9/0.1% water/

formic acid (v/v) and 80/20/0.1% acetonitrile/water/formic acid

(v/v/v). For the LCC cohort, the flow rate was constant at 300 nl/

min and the initial concentration of 5% B was linearly increased to

30% B within 36 min, and then increased further to 95% within

6 min with a 3 min plateau at the end. For the Columbia cohort,

the flow rate was constant at 350 nl/min and the initial concentra-

tion of 5% B was linearly increased to 30% B within 35 min, and

then increased further to 95% within 5 min with a 5 min plateau

at the end.

MS data were acquired in the data-independent acquisition (DIA)

scan mode for single-shot patient samples, using the MaxQuant Live

software and spectral processing with phase-constrained spectrum

deconvolution (phi-SDM; Grinfeld et al, 2017; Wichmann et al,

2019). Full MS scans were acquired in the range of m/z 300–1,650

at a resolution of 60,000 at m/z 200 and the automatic gain control

(AGC) set to 3e6. For the Columbia cohort, additionally two BoxCar

scans with 12 isolation windows each and a resolution of 60,000 at

m/z 200 were acquired (Meier et al, 2018) . Full MS events were

followed by 33 MS/MS windows (LCC cohort) or 58 MS/MS

windows (Columbia cohort) per cycle in the range of m/z 300–
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1,650 at a resolution of 15,000 at m/z 200. For the LCC cohort,

higher-energy collisional dissociation MS/MS scans were acquired

with a stepped normalized collision energy of 25/27.5/30 and ions

were accumulated to reach an AGC target value of 3e6 or for a maxi-

mum of 30 ms. For the Columbia cohort, higher-energy collisional

dissociation MS/MS scans were acquired with a normalized colli-

sion energy of 27 and ions were accumulated to reach an AGC target

value of 3e6 or for a maximum of 22 ms.

All fractionated samples including EV fractions were acquired

with a top 12 data-dependent acquisition (DDA) scan mode. Full MS

scans were acquired in the range of m/z 300–1,650 at a resolution

of 60,000 (Columbia cohort) or 120,000 (LCC cohort) at m/z 200.

The automatic gain control (AGC) target was set to 3e6. Higher-

energy collisional dissociation MS/MS scans were acquired with a

normalized collision energy of 27 at a resolution of 15,000 at m/z

200. Precursor ions with charge states of 2-7 were isolated in a 1.4

Th window and accumulated to reach an AGC target value of 1e5 or

for a maximum of 60 ms. Precursors were dynamically excluded for

20 s after the first fragmentation event.

Mass spectrometry data processing

The MS data of the fractionated pools (DDA MS data, 24 neat pool

urine and 8 EV fractions) and the single-shot subject samples (DIA

MS data, 165 and 132 samples in Columbia and LCC, respectively)

were used to generate a DDA library and directDIA library, respec-

tively, which were computationally merged into two cohort-specific

hybrid libraries using Spectronaut version 13.9.191106.43655 (Biog-

nosys AG). For all experiments except the machine learning, the

two cohorts were quantified separately in Spectronaut. A minimum

of 3 and a maximum of 10 fragments were required for each

peptide in the library. The hybrid spectral libraries were subse-

quently used to search the MS data of the single-shot patient

samples in the Spectronaut software. All searches were performed

against the human SwissProt reference proteome of canonical and

isoform sequences with 42,431 entries downloaded in July 2019.

Searches used carbamidomethylation as fixed modification and

acetylation of the protein N-terminus and oxidation of methionines

as variable modifications. Trypsin/P proteolytic cleavage rule was

used, permitting a maximum of 2 missed cleavages and a minimum

peptide length of 7 amino acids. The Q-value cutoffs for both

library generation and DIA analyses were set to 0.01. For genera-

tion of the global correlation map, the individual protein correla-

tions with clinical parameters, and the machine learning, the Q-

value data filtering setting in Spectronaut was set to “Qvalue” to

use every peptide passing the Q-value threshold for the protein

group quantification. For all other analyses, the setting was set to

“Qvalue percentile” with a cutoff of 25%, to use only those

peptides for the protein quantification that passed the Q-value

threshold in at least 25% of all analyzed samples. The “Qvalue

percentile” setting results in a complete data matrix with no miss-

ing values, as the noise is quantified and reported if the peptide did

not pass the Q-value threshold.

Bioinformatics data analysis

The Perseus software package versions 1.6.0.7 and 1.6.1.3 and

GraphPad Prism version 7.03 were used for the data analysis

(Tyanova et al, 2016). Protein intensities were log2-transformed for

further analysis apart from correlation and coefficient of variation

analysis. Coefficients of variation (CVs) were calculated in Perseus

for all inter-plate and intra-plate combinations of samples, the

median values were reported as overall coefficient of variation. The

protein CVs of the main study were calculated likewise within

cohorts individually. The protein abundance levels were cross-corre-

lated to generate a matrix of correlation coefficients. Unsupervised

hierarchical clustering was performed using Perseus and proteins

were clustered based on Pearson correlation scores. For generation

of the abundance curves, median protein abundances across all

samples within a proteome were used. ANCOVA analysis was

performed in python (version 3.7.6) using the pandas (version

1.0.1), numpy (version 1.18.1), and pingouin (version 0.3.4) pack-

ages. For the ANCOVA analysis, age at sample collection, LRRK2

status (only in PD+ vs. PD�), GBA status (only Columbia cohort

LRRK2+ vs. LRRK2�), and PD status (only LRRK2+ vs. LRRK2�)
were set as confounding factors. The FDR was set to 5% after

Benjamini–Hochberg correction. GO annotations were matched to

the proteome data based on Uniprot and Ensemble identifiers.

Annotation term enrichment was performed with Fisher exact test

in Perseus separately for each cohort. Annotation terms were fil-

tered for terms with an FDR of 5% after Benjamini–Hochberg

correction in each cohort. Calculation of Pearson correlation scores

and associated P-values of protein intensities to UPDRS-III and

MoCA scores was performed in Perseus. Benjamini–Hochberg

The paper explained

Problem

Parkinson’s disease (PD) is the second most common neurodegenera-
tive disease and due to the aging population, its prevalence is steadily
increasing. Patients are typically diagnosed when motor impairment
manifests and irreversible brain damage has already occurred. Devel-
opment of disease-modifying therapeutics has been hampered by the
lack of specific tests for early detection of PD.

Results
We developed a scalable, sensitive, and reproducible mass spectrome-
try-based workflow for urinary proteome profiling and applied it to
two independent urine cohorts with PD patients and controls. The
cohorts also contained carriers of the LRRK2 G2019S mutation, which
is a strong risk factor for developing PD and frequently found in
familial forms of the disease. In total, 361 proteins were significantly
different in PD patients compared to non-diseased individuals, includ-
ing proteins involved in protein folding and canonical ribonucleases.
Individuals with the G2019S mutation showed 237 differentially
expressed proteins and lysosomal dysregulation in urine. Machine
learning successfully classified PD and LRRK2 status on the basis of
the urinary proteome alone (specificities of 73% and 84% and sensi-
tivities of 78% and 74%, respectively). Classification of manifesting
and non-manifesting LRRK2 G2019S carriers reached a remarkable
specificity and sensitivity of 88%.

Impact
These results demonstrate that urine is a valuable non-invasive body
fluid for the detection of biomarkers for a neurodegenerative disease
such as PD. Furthermore, this study improves our understanding of
PD biology and identified pathways to be further investigated for the
development of novel treatment strategies.
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correction to calculate which proteins were significantly correlated

with an FDR of 5% was performed in R using the “stats” package.

Machine learning

Data processing and machine learning was performed in Python (ver-

sion 3.7.3). Missing values were not imputed and protein intensities

were normalized using the ScandardScaler method from the scikit-

learn package (0.21.3). The XGBoost package (version 0.90) was

used to classify the samples and results were plotted using the bokeh

library (2.1.1). Features were selected using a decision tree. Samples

from both Columbia and LCC cohorts were used for the model and

cross-validated using four stratified training/test splits and 15 repeats

were applied. To assess sensitivity and specificity of the model, the

results of the test sets were summed and averaged from 15 repeats.

Data availability

The mass spectrometry proteomics data have been deposited to the

ProteomeXchange Consortium via the PRIDE partner repository with

the dataset identifier PXD020722.

• Proteomics raw files: PRIDE PXD020722 (www.ebi.ac.uk/pride/

archive/projects/PXD020722).

Expanded View for this article is available online.
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