28 research outputs found

    Multiple Sporadic Colorectal Cancers Display a Unique Methylation Phenotype

    Get PDF
    The members of the Gastrointestinal Oncology Group of the Spanish Gastroenterological Association are: Hospital 12 de Octubre, Madrid: Juan Diego Morillas (local coordinator), Raquel Muñoz, Marisa Manzano, Francisco Colina, Jose Díaz, Carolina Ibarrola, Guadalupe López, Alberto Ibáñez; Hospital Clínic, Barcelona: Antoni Castells (local coordinator), Virgínia Piñol, Sergi Castellví-Bel, Francesc Balaguer, Victoria Gonzalo, Teresa Ocaña, María Dolores Giráldez, Maria Pellisé, Anna Serradesanferm, Leticia Moreira, Miriam Cuatrecasas, Josep M. Piqué; Hospital Clínico Universitario, Zaragoza: Ángel Lanas (local coordinator), Javier Alcedo, Javier Ortego; Hospital Cristal-Piñor, Complexo Hospitalario de Ourense: Joaquin Cubiella (local coordinator), Ma Soledad Díez, Mercedes Salgado, Eloy Sánchez, Mariano Vega; Hospital del Mar, Barcelona: Montserrat Andreu (local coordinator), Anna Abuli, Xavier Bessa, Mar Iglesias, Agustín Seoane, Felipe Bory, Gemma Navarro, Beatriz Bellosillo, Josep Ma Dedeu, Cristina Álvarez, Begoña Gonzalez; Hospital San Eloy, Baracaldo and Hospital Donostia, CIBERehd, University of Country Basque, San Sebastián: Luis Bujanda (local coordinator) Ángel Cosme, Inés Gil, Mikel Larzabal, Carlos Placer, María del Mar Ramírez, Elisabeth Hijona, Jose M. Enríquez-Navascués, Jose L. Elosegui; Hospital General Universitario de Alicante: Artemio Payá (EPICOLON I local coordinator), Rodrigo Jover (EPICOLON II local coordinator), Cristina Alenda, Laura Sempere, Nuria Acame, Estefanía Rojas, Lucía Pérez-Carbonell; Hospital General de Granollers: Joaquim Rigau (local coordinator), Ángel Serrano, Anna Giménez; Hospital General de Vic: Joan Saló (local coordinator), Eduard Batiste-Alentorn, Josefina Autonell, Ramon Barniol; Hospital General Universitario de Guadalajara and Fundación para la Formación e Investigación Sanitarias Murcia: Ana María García (local coordinator), Fernando Carballo, Antonio Bienvenido, Eduardo Sanz, Fernando González, Jaime Sánchez, Akiko Ono; Hospital General Universitario de Valencia: Mercedes Latorre (local coordinator), Enrique Medina, Jaime Cuquerella, Pilar Canelles, Miguel Martorell, José Ángel García, Francisco Quiles, Elisa Orti; CHUVI-Hospital Meixoeiro, Vigo: EPICOLON I: Juan Clofent (local coordinator), Jaime Seoane, Antoni Tardío, Eugenia Sanchez; EPICOLON II: Ma Luisa de Castro (local coordinator), Antoni Tardío, Juan Clofent, Vicent Hernández; Hospital Universitari Germans Trias i Pujol, Badalona and Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago, IL: Xavier Llor (local coordinator), Rosa M. Xicola, Marta Piñol, Mercè Rosinach, Anna Roca, Elisenda Pons, José M. Hernández, Miquel A. Gassull; Hospital Universitari Mútua de Terrassa: Fernando Fernández-Bañares (local coordinator), Josep M. Viver, Antonio Salas, Jorge Espinós, Montserrat Forné, Maria Esteve; Hospital Universitari Arnau de Vilanova, Lleida: Josep M. Reñé (local coordinator), Carmen Piñol, Juan Buenestado, Joan Viñas; Hospital Universitario de Canarias: Enrique Quintero (local coordinator), David Nicolás, Adolfo Parra, Antonio Martín; Hospital Universitario La Fe, Valencia: Lidia Argüello (local coordinator), Vicente Pons, Virginia Pertejo, Teresa Sala; Hospital Sant Pau, Barcelona: Dolors Gonzalez (local coordinator), Eva Roman, Teresa Ramon, Maria Poca, Ma Mar Concepción, Marta Martin, Lourdes Pétriz; Hospital Xeral Cies, Vigo: Daniel Martinez (local coordinator); Fundacion Publica Galega de Medicina Xenomica (FPGMX), CIBERER, Genomic Medicine Group-University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain: Ángel Carracedo (local coordinator), Clara Ruiz-Ponte, Ceres Fernández-Rozadilla, Ma Magdalena Castro; Hospital Universitario Central de Asturias: Sabino Riestra (local coordinator), Luis Rodrigo; Hospital de Galdácano, Vizcaya: Javier Fernández (local coordinator), Jose Luis Cabriada; Fundación Hospital de Calahorra (La Rioja) La Rioja: Luis Carreño (local coordinator), Susana Oquiñena, Federico Bolado; Hospital Royo Villanova, Zaragoza: Elena Peña (local coordinator), José Manuel Blas, Gloria Ceña, Juan José Sebastián; Hospital Universitario Reina Sofía, Córdoba: Antonio Naranjo (local coordinator).Epigenetics are thought to play a major role in the carcinogenesis of multiple sporadic colorectal cancers (CRC). Previous studies have suggested concordant DNA hypermethylation between tumor pairs. However, only a few methylation markers have been analyzed. This study was aimed at describing the epigenetic signature of multiple CRC using a genome-scale DNA methylation profiling. We analyzed 12 patients with synchronous CRC and 29 age-, sex-, and tumor location-paired patients with solitary tumors from the EPICOLON II cohort. DNA methylation profiling was performed using the Illumina Infinium HM27 DNA methylation assay. The most significant results were validated by Methylight. Tumors samples were also analyzed for the CpG Island Methylator Phenotype (CIMP); KRAS and BRAF mutations and mismatch repair deficiency status. Functional annotation clustering was performed. We identified 102 CpG sites that showed significant DNA hypermethylation in multiple tumors with respect to the solitary counterparts (difference in β value ≥0.1). Methylight assays validated the results for 4 selected genes (p = 0.0002). Eight out of 12(66.6%) multiple tumors were classified as CIMP-high, as compared to 5 out of 29(17.2%) solitary tumors (p = 0.004). Interestingly, 76 out of the 102 (74.5%) hypermethylated CpG sites found in multiple tumors were also seen in CIMP-high tumors. Functional analysis of hypermethylated genes found in multiple tumors showed enrichment of genes involved in different tumorigenic functions. In conclusion, multiple CRC are associated with a distinct methylation phenotype, with a close association between tumor multiplicity and CIMP-high. Our results may be important to unravel the underlying mechanism of tumor multiplicity.This work was supported by grants from the Hospital Clínic of Barcelona (Josep Font grant), Ministerio de Economí­a y Competitividad (SAF 2007-64873 and SAF2010-19273), Fundación Científica de la Asociación Española contra el Cáncer, and Instituto de Salud Carlos III (PI10/00384). “Cofinanciado por el Fondo Europeo de Desarrollo Regional (FEDER). Unión Europea. Una manera de hacer Europa”. CIBEREHD is funded by the Instituto de Salud Carlos III

    Rectal Aberrant Crypt Foci in Humans Are Not Surrogate Markers for Colorectal Cancer Risk

    Get PDF
    NTRODUCTION: Over the past 20 years, aberrant crypt foci (ACF) have emerged as potential precursors and biomarkers for colorectal cancer (CRC). However, data regarding their molecular pathogenesis, as well as their endoscopic and histological identification, remain inconsistent. METHODS: A wide cohort of ACF from 100 control subjects and 100 case patients, including patients with adenoma and CRC, were characterized for endoscopic, morphologic, and molecular features. RESULTS: We observed that among all the endoscopic features evaluated, only the number of large ACF correlated with CRC risk (P = 0.003), whereas the histological classification, as assessed by 2 different pathologists, was inconsistent and did not differ between control and case patients. Moreover, only a few APC and BRAF mutations and no microsatellite instability were detected in our samples. KRAS mutations were detected in 16.3% of ACF samples, which also exhibited increased MGMT hypermethylation. However, none of those events were found to be predictive of CRC risk. DISCUSSION: Although ACF might be preneoplastic lesions of the colon, they are not suitable biomarkers for assessing CRC progression

    Aberrant Gene Promoter Methylation Associated with Sporadic Multiple Colorectal Cancer

    Get PDF
    BACKGROUND: Colorectal cancer (CRC) multiplicity has been mainly related to polyposis and non-polyposis hereditary syndromes. In sporadic CRC, aberrant gene promoter methylation has been shown to play a key role in carcinogenesis, although little is known about its involvement in multiplicity. To assess the effect of methylation in tumor multiplicity in sporadic CRC, hypermethylation of key tumor suppressor genes was evaluated in patients with both multiple and solitary tumors, as a proof-of-concept of an underlying epigenetic defect. METHODOLOGY/PRINCIPAL FINDINGS: We examined a total of 47 synchronous/metachronous primary CRC from 41 patients, and 41 gender, age (5-year intervals) and tumor location-paired patients with solitary tumors. Exclusion criteria were polyposis syndromes, Lynch syndrome and inflammatory bowel disease. DNA methylation at the promoter region of the MGMT, CDKN2A, SFRP1, TMEFF2, HS3ST2 (3OST2), RASSF1A and GATA4 genes was evaluated by quantitative methylation specific PCR in both tumor and corresponding normal appearing colorectal mucosa samples. Overall, patients with multiple lesions exhibited a higher degree of methylation in tumor samples than those with solitary tumors regarding all evaluated genes. After adjusting for age and gender, binomial logistic regression analysis identified methylation of MGMT2 (OR, 1.48; 95% CI, 1.10 to 1.97; p = 0.008) and RASSF1A (OR, 2.04; 95% CI, 1.01 to 4.13; p = 0.047) as variables independently associated with tumor multiplicity, being the risk related to methylation of any of these two genes 4.57 (95% CI, 1.53 to 13.61; p = 0.006). Moreover, in six patients in whom both tumors were available, we found a correlation in the methylation levels of MGMT2 (r = 0.64, p = 0.17), SFRP1 (r = 0.83, 0.06), HPP1 (r = 0.64, p = 0.17), 3OST2 (r = 0.83, p = 0.06) and GATA4 (r = 0.6, p = 0.24). Methylation in normal appearing colorectal mucosa from patients with multiple and solitary CRC showed no relevant difference in any evaluated gene. CONCLUSIONS: These results provide a proof-of-concept that gene promoter methylation is associated with tumor multiplicity. This underlying epigenetic defect may have noteworthy implications in the prevention of patients with sporadic CRC

    Multiple sporadic colorectal cancers display a unique methylation phenotype.

    Get PDF
    Epigenetics are thought to play a major role in the carcinogenesis of multiple sporadic colorectal cancers (CRC). Previous studies have suggested concordant DNA hypermethylation between tumor pairs. However, only a few methylation markers have been analyzed. This study was aimed at describing the epigenetic signature of multiple CRC using a genome-scale DNA methylation profiling. We analyzed 12 patients with synchronous CRC and 29 age-, sex-, and tumor location-paired patients with solitary tumors from the EPICOLON II cohort. DNA methylation profiling was performed using the Illumina Infinium HM27 DNA methylation assay. The most significant results were validated by Methylight. Tumors samples were also analyzed for the CpG Island Methylator Phenotype (CIMP); KRAS and BRAF mutations and mismatch repair deficiency status. Functional annotation clustering was performed. We identified 102 CpG sites that showed significant DNA hypermethylation in multiple tumors with respect to the solitary counterparts (difference in β value ≥0.1). Methylight assays validated the results for 4 selected genes (p = 0.0002). Eight out of 12(66.6%) multiple tumors were classified as CIMP-high, as compared to 5 out of 29(17.2%) solitary tumors (p = 0.004). Interestingly, 76 out of the 102 (74.5%) hypermethylated CpG sites found in multiple tumors were also seen in CIMP-high tumors. Functional analysis of hypermethylated genes found in multiple tumors showed enrichment of genes involved in different tumorigenic functions. In conclusion, multiple CRC are associated with a distinct methylation phenotype, with a close association between tumor multiplicity and CIMP-high. Our results may be important to unravel the underlying mechanism of tumor multiplicity

    Case-control study for colorectal cancer genetic susceptibility in EPICOLON: previously identified variants and mucins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Colorectal cancer (CRC) is the second leading cause of cancer death in developed countries. Familial aggregation in CRC is also important outside syndromic forms and, in this case, a polygenic model with several common low-penetrance alleles contributing to CRC genetic predisposition could be hypothesized. Mucins and GALNTs (N-acetylgalactosaminyltransferase) are interesting candidates for CRC genetic susceptibility and have not been previously evaluated. We present results for ten genetic variants linked to CRC risk in previous studies (previously identified category) and 18 selected variants from the mucin gene family in a case-control association study from the Spanish EPICOLON consortium.</p> <p>Methods</p> <p>CRC cases and matched controls were from EPICOLON, a prospective, multicenter, nationwide Spanish initiative, comprised of two independent stages. Stage 1 corresponded to 515 CRC cases and 515 controls, whereas stage 2 consisted of 901 CRC cases and 909 controls. Also, an independent cohort of 549 CRC cases and 599 controls outside EPICOLON was available for additional replication. Genotyping was performed for ten previously identified SNPs in <it>ADH1C</it>, <it>APC</it>, <it>CCDN1</it>, <it>IL6</it>, <it>IL8</it>, <it>IRS1</it>, <it>MTHFR</it>, <it>PPARG</it>, <it>VDR </it>and <it>ARL11</it>, and 18 selected variants in the mucin gene family.</p> <p>Results</p> <p>None of the 28 SNPs analyzed in our study was found to be associated with CRC risk. Although four SNPs were significant with a <it>P</it>-value < 0.05 in EPICOLON stage 1 [rs698 in <it>ADH1C </it>(OR = 1.63, 95% CI = 1.06-2.50, <it>P</it>-value = 0.02, recessive), rs1800795 in <it>IL6 </it>(OR = 1.62, 95% CI = 1.10-2.37, <it>P</it>-value = 0.01, recessive), rs3803185 in <it>ARL11 </it>(OR = 1.58, 95% CI = 1.17-2.15, <it>P</it>-value = 0.007, codominant), and rs2102302 in <it>GALNTL2 </it>(OR = 1.20, 95% CI = 1.00-1.44, <it>P</it>-value = 0.04, log-additive 0, 1, 2 alleles], only rs3803185 achieved statistical significance in EPICOLON stage 2 (OR = 1.34, 95% CI = 1.06-1.69, <it>P</it>-value = 0.01, recessive). In the joint analysis for both stages, results were only significant for rs3803185 (OR = 1.12, 95% CI = 1.00-1.25, <it>P</it>-value = 0.04, log-additive 0, 1, 2 alleles) and borderline significant for rs698 and rs2102302. The rs3803185 variant was not significantly associated with CRC risk in an external cohort (MCC-Spain), but it still showed some borderline significance in the pooled analysis of both cohorts (OR = 1.08, 95% CI = 0.98-1.18, <it>P</it>-value = 0.09, log-additive 0, 1, 2 alleles).</p> <p>Conclusions</p> <p><it>ARL11</it>, <it>ADH1C</it>, <it>GALNTL2 </it>and <it>IL6 </it>genetic variants may have an effect on CRC risk. Further validation and meta-analyses should be undertaken in larger CRC studies.</p
    corecore