6,027 research outputs found
Alignment procedure of the LHCb Vertex Detector
LHCb is one of the four main experiments of the Large Hadron Collider (LHC)
project, which will start at CERN in 2008. The experiment is primarily
dedicated to B-Physics and hence requires precise vertex reconstruction. The
silicon vertex locator (VELO) has a single hit precision of better than 10
micron and is used both off-line and in the trigger. These requirements place
strict constraints on its alignment. Additional challenges for the alignment
arise from the detector being retracted between each fill of the LHC and from
its unique circular disc r/phi strip geometry. This paper describes the track
based software alignment procedure developed for the VELO. The procedure is
primarily based on a non-iterative method using a matrix inversion technique.
The procedure is demonstrated with simulated events to be fast, robust and to
achieve a suitable alignment precision.Comment: accepted for publication in NIM
LHCb VELO software alignment, Part III: the alignment of the relative sensor positions
The LHCb Vertex Locator contains 42 silicon sensor modules. Each module has
two silicon sensors. A method for determining the relative alignment of the
silicon sensors within each module from data is presented. The software
implementation details are discussed. Monte-Carlo simulation studies are
described that demonstrate an alignment precision of 1.3 micron is obtained in
the sensor plane
LHCb VELO software alignment - PART II: the alignment of the VELO detector-halves
The software alignment of the Vertex Locator (VELO) is a critical component of the LHCb alignment strategy. This note demonstrates a potential algorithm to perform the alignment of the VELO detector-halves. The approach described in this document, and the tools developed, are also applicable to the alignment of the other LHCb sub-systems and the global relative alignment of the sub-detectors
Photovoltaic response around a unique180° ferroelectric domain wall in single crystalline BiFeO3
Using an experimental setup designed to scan a submicron sized light spot and collect the photogenerated current through larger electrodes, we map the photovoltaic response in ferroelectric BiFeO3 single crystals. We study the effect produced by a unique 180° ferroelectric domain wall (DW) and show that the photocurrent maps are significantly affected by its presence and shape. The effect is large in its vicinity and in the Schottky barriers at the interface with the Au electrodes, but no extra photocurrent is observed when the illuminating spot touches the DW, indicating that this particular entity is not the heart of specific photo-electric properties. Using 3D modelling, we argue that the measured effect is due to the spatial distribution of internal fields which are significantly affected by the charge of the DW due to its distortion
Interplay of structure and spin-orbit strength in magnetism of metal-benzene sandwiches: from single molecules to infinite wires
Based on first-principles density functional theory calculations we explore
electronic and magnetic properties of experimentally producible sandwiches and
infinite wires made of repeating benzene molecules and transition-metal atoms
of V, Nb, and Ta. We describe the bonding mechanism in the molecules and in
particular concentrate on the origin of magnetism in these structures. We find
that all the considered systems have sizable magnetic moments and ferromagnetic
spin-ordering, with the single exception of the V3-Bz4 molecule. By including
the spin-orbit coupling into our calculations we determine the easy and hard
axes of the magnetic moment, the strength of the uniaxial magnetic anisotropy
energy (MAE), relevant for the thermal stability of magnetic orientation, and
the change of the electronic structure with respect to the direction of the
magnetic moment, important for spin-transport properties. While for the V-based
compounds the values of the MAE are only of the order of 0.05-0.5 meV per metal
atom, increasing the spin-orbit strength by substituting V with heavier Nb and
Ta allows to achieve an increase in anisotropy values by one to two orders of
magnitude. The rigid stability of magnetism in these compounds together with
the strong ferromagnetic ordering makes them attractive candidates for
spin-polarized transport applications. For a Nb-benzene infinite wire the
occurrence of ballistic anisotropic magnetoresistance is demonstrated.Comment: 23 pages, 8 figure
Control of the spin to charge conversion using the inverse Rashba-Edelstein effect
Under the terms of the Creative Commons Attribution 3.0 Unported License to their work.We show here that using spin orbit coupling interactions at a metallic interface it is possible to
control the sign of the spin to charge conversion in a spin pumping experiment. Using the intrinsic
symmetry of the “Inverse Rashba Edelstein Effect” (IREE) in a Bi/Ag interface, the charge current
changes sign when reversing the order of the Ag and Bi stacking. This confirms the IREE nature of
the conversion of spin into charge in these interfaces and opens the way to tailoring the spin
sensing voltage by an appropriate trilayer sequence.We would like to acknowledge financial support from the European Commission through the Marie Curie Intra European Fellowship Project No. 301656: AtomicFMR, funded by the 7th Framework Programme. This work was supported by Spanish Ministry of Economy and Competitivity through Project No. MAT2011-27553-C02, including FEDER funds, and by the Aragon Regional Government.Peer reviewe
Negative Domain Wall Contribution to the Resistivity of Microfabricated Fe Wires
The effect of domain walls on electron transport has been investigated in
microfabricated Fe wires (0.65 to 20 linewidths) with controlled stripe
domains. Magnetoresistance (MR) measurements as a function of domain wall
density, temperature and the angle of the applied field are used to determine
the low field MR contributions due to conventional sources in ferromagnetic
materials and that due to the erasure of domain walls. A negative domain wall
contribution to the resistivity is found. This result is discussed in light of
a recent theoretical study of the effect of domain walls on quantum transport.Comment: 7 pages, 4 postscript figures and 1 jpg image (Fig. 1
Response of electrically coupled spiking neurons: a cellular automaton approach
Experimental data suggest that some classes of spiking neurons in the first
layers of sensory systems are electrically coupled via gap junctions or
ephaptic interactions. When the electrical coupling is removed, the response
function (firing rate {\it vs.} stimulus intensity) of the uncoupled neurons
typically shows a decrease in dynamic range and sensitivity. In order to assess
the effect of electrical coupling in the sensory periphery, we calculate the
response to a Poisson stimulus of a chain of excitable neurons modeled by
-state Greenberg-Hastings cellular automata in two approximation levels. The
single-site mean field approximation is shown to give poor results, failing to
predict the absorbing state of the lattice, while the results for the pair
approximation are in good agreement with computer simulations in the whole
stimulus range. In particular, the dynamic range is substantially enlarged due
to the propagation of excitable waves, which suggests a functional role for
lateral electrical coupling. For probabilistic spike propagation the Hill
exponent of the response function is , while for deterministic spike
propagation we obtain , which is close to the experimental values
of the psychophysical Stevens exponents for odor and light intensities. Our
calculations are in qualitative agreement with experimental response functions
of ganglion cells in the mammalian retina.Comment: 11 pages, 8 figures, to appear in the Phys. Rev.
Small-polaron hopping conductivity in bilayer manganite LaSrMnO
We report anisotropic resistivity measurements on a
LaSrMnO single crystal over a temperature range
from 2 to 400 K and in magnetic fields up to 14 T. For K, the
temperature dependence of the zero-field in-plane resistivity
obeys the adiabatic small polaron hopping mechanism, while the out-of-plane
resistivity can be ascribed by an Arrhenius law with the same
activation energy. Considering the magnetic character of the polarons and the
close correlation between the resistivity and magnetization, we developed a
model which allows the determination of . The excellent
agreement of the calculations with the measurements indicates that small
polarons play an essential role in the electrical transport properties in the
paramagnetic phase of bilayer manganites.Comment: 4 pages, 3 figures, to appear in Physical Review
- …
