210 research outputs found

    Hydrodynamics of quantum spin liquids

    Full text link
    Quantum spin liquids are topological states of matter that arise in frustrated quantum magnets at low temperatures. At low energies, such states exhibit emergent gauge fields and fractionalized quasiparticles and can also possess enhanced global symmetries compared to their parent microscopic Hamiltonians. We study the consequences of this emergent gauge and symmetry structure for the hydrodynamics of quantum spin liquids. Specifically, we analyze two cases, the U(1)U(1) spin liquid with a Fermi surface and the SU(4)SU(4)-symmetric "algebraic" spin liquid. We show that the emergent degrees of freedom in the spin liquid phase lead to a variety of additional hydrodynamic modes compared to the high-temperature paramagnetic phase. We identify a hydrodynamic regime for the internal U(1)U(1) gauge field common to both states, characterized by slow diffusion of the internal transverse photon.Comment: v2: 11+4 pages, 1 figure, accepted versio

    Observation of a phase transition within the domain walls of ferromagnetic Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub>

    Get PDF
    In the Bloch or Neel domain walls in ferromagnets, the magnetization rotates smoothly from up to down, preserving its magnitude. Here, Lee et al show that Co3Sn2S2 exhibits a phase transition within its domain walls to a state in which the magnetization passes through zero rather than rotating as the wall is traversed. The ferromagnetic phase of Co3Sn2S2 is widely considered to be a topological Weyl semimetal, with evidence for momentum-space monopoles of Berry curvature from transport and spectroscopic probes. As the bandstructure is highly sensitive to the magnetic order, attention has focused on anomalies in magnetization, susceptibility and transport measurements that are seen well below the Curie temperature, leading to speculation that a "hidden" phase coexists with ferromagnetism. Here we report spatially-resolved measurements by Kerr effect microscopy that identify this phase. We find that the anomalies coincide with a deep minimum in domain wall (DW) mobility, indicating a crossover between two regimes of DW propagation. We demonstrate that this crossover is a manifestation of a 2D phase transition that occurs within the DW, in which the magnetization texture changes from continuous rotation to unidirectional variation. We propose that the existence of this 2D transition deep within the ferromagnetic state of the bulk is a consequence of a giant quality factor for magnetocrystalline anisotropy unique to this compound. This work broadens the horizon of the conventional binary classification of DWs into Bloch and Neel walls, and suggests new strategies for manipulation of domain walls and their role in electron and spin transport

    Anisotropic Nodal-Line-Derived Large Anomalous Hall Conductivity in ZrMnP and HfMnP

    Get PDF
    The nontrivial band structure of semimetals has attracted substantial research attention in condensed matter physics and materials science in recent years owing to its intriguing physical properties. Within this class, a group of nontrivial materials known as nodal-line semimetals is particularly important. Nodal-line semimetals exhibit the potential effects of electronic correlation in nonmagnetic materials, whereas they enhance the contribution of the Berry curvature in magnetic materials, resulting in high anomalous Hall conductivity (AHC). In this study, two ferromagnetic compounds, namely ZrMnP and HfMnP, are selected, wherein the abundance of mirror planes in the crystal structure ensures gapped nodal lines at the Fermi energy. These nodal lines result in one of the largest AHC values of 2840 omega(-1) cm(-1), with a high anomalous Hall angle of 13.6% in these compounds. First-principles calculations provide a clear and detailed understanding of nodal line-enhanced AHC. The finding suggests a guideline for searching large AHC compounds

    Giant Anomalous Hall Conductivity in the Itinerant Ferromagnet LaCrSb<sub>3</sub> and the Effect of f-Electrons

    Get PDF
    Itinerant ferromagnets constitute an important class of materials wherein spin polarization can affect the electric transport properties in nontrivial ways. One such phenomenon is anomalous Hall effect which depends on the details of the band structure such as the amount of band crossings in the valence band of the ferromagnet. Here, extraordinary anomalous Hall effect is found in an itinerant ferromagnetic metal LaCrSb3. The rather 2D nature of the magnetic subunit imparts large anisotropic anomalous Hall conductivity of 1250 Ω−1 cm−1 at 2 K. The investigations suggest that a strong Berry curvature by abundant momentum-space crossings and narrow energy-gap openings are the primary sources of the anomalous Hall conductivity. An important observation is the existence of quasi-dispersionless bands in LaCrSb3 which is now known to increase the anomalous Hall conductivity. After introducing f-electrons, anomalous Hall conductivity experiences more than twofold increase and reaches 2900 Ω−1 cm−1 in NdCrSb3. © 2021 The Authors. Advanced Quantum Technologies published by Wiley-VCH Gmb

    Prediction of IL4 Inducing Peptides

    Get PDF
    The secretion of Interleukin-4 (IL4) is the characteristic of T-helper 2 responses. IL4 is a cytokine produced by CD4+ T cells in response to helminthes and other extracellular parasites. It has a critical role in guiding antibody class switching, hematopoiesis and inflammation, and the development of appropriate effector T-cell responses. In this study, it is the first time an attempt has been made to understand whether it is possible to predict IL4 inducing peptides. The data set used in this study comprises 904 experimentally validated IL4 inducing and 742 noninducing MHC class II binders. Our analysis revealed that certain types of residues are preferred at certain positions in IL4 inducing peptides. It was also observed that IL4 inducing and noninducing epitopes differ in compositional and motif pattern. Based on our analysis we developed classification models where the hybrid method of amino acid pairs and motif information performed the best with maximum accuracy of 75.76% and MCC of 0.51. These results indicate that it is possible to predict IL4 inducing peptides with reasonable precession. These models would be useful in designing the peptides that may induce desired Th2 response

    Anisotropic fractal magnetic domain pattern in bulk Mn1.4PtSn

    Get PDF
    The tetragonal compound Mn1.4PtSn with D2d symmetry recently attracted attention as the first known material that hosts magnetic antiskyrmions, which differ from the skyrmions known so far by their internal structure. The latter have been found in a number of magnets with the chiral crystal structure. In previous works, the existence of antiskyrmions in Mn1.4PtSn was unambiguously demonstrated in real space by means of Lorentz transmission electron microscopy on thin-plate samples (∼100 nm thick). In the present study, we used small-angle neutron scattering and magnetic force microscopy to perform reciprocal- and real-space imaging of the magnetic texture of bulk Mn1.4PtSn single crystals at different temperatures and in applied magnetic field. We found that the magnetic texture in the bulk differs significantly from that of thin-plate samples. Instead of spin helices or an antiskyrmion lattice, we observe an anisotropic fractal magnetic pattern of closure domains in zero field above the spin-reorientation transition temperature, which transforms into a set of bubble domains in high field. Below the spin-reorientation transition temperature the strong in-plane anisotropy as well as the fractal self-affinity in zero field is gradually lost, while the formation of bubble domains in high field remains robust. The results of our study highlight the importance of dipole-dipole interactions in thin-plate samples for the stabilization of antiskyrmions and identify criteria which should guide the search for potential (anti)skyrmion host materials. Moreover, they provide consistent interpretations of the previously reported magnetotransport anomalies of the bulk crystals. © 2020 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Open access publication funded by the Max Planck Society

    Evidence for one-dimensional chiral edge states in a magnetic Weyl semimetal Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub>

    Get PDF
    The physical realization of Chern insulators is of fundamental and practical interest, as they are predicted to host the quantum anomalous Hall (QAH) effect and topologically protected chiral edge states which can carry dissipationless current. Current realizations of the QAH state often require complex heterostructures and sub-Kelvin temperatures, making the discovery of intrinsic, high temperature QAH systems of significant interest. In this work we show that time-reversal symmetry breaking Weyl semimetals, being essentially stacks of Chern insulators with inter-layer coupling, may provide a new platform for the higher temperature realization of robust chiral edge states. We present combined scanning tunneling spectroscopy and theoretical investigations of the magnetic Weyl semimetal, Co3Sn2S2. Using modeling and numerical simulations we find that depending on the strength of the interlayer coupling, chiral edge states can be localized on partially exposed kagome planes on the surfaces of a Weyl semimetal. Correspondingly, our dI/dV maps on the kagome Co3Sn terraces show topological states confined to the edges which display linear dispersion. This work provides a new paradigm for realizing chiral edge modes and provides a pathway for the realization of higher temperature QAH effect in magnetic Weyl systems in the two-dimensional limit. © 2021, The Author(s)

    Draft genome sequence of Sclerospora graminicola, the pearl millet downy mildew pathogen:Genome sequence of pearl millet downy mildew pathogen

    Get PDF
    Sclerospora graminicola pathogen is one of the most important biotic production constraints of pearl millet worldwide. We report a de novo whole genome assembly and analysis of pathotype 1. The draft genome assembly contained 299,901,251 bp with 65,404 genes. Pearl millet [Pennisetum glaucum (L.) R. Br.], is an important crop of the semi-arid and arid regions of the world. It is capable of growing in harsh and marginal environments with highest degree of tolerance to drought and heat among cereals (1). Downy mildew is the most devastating disease of pearl millet caused by Sclerospora graminicola (sacc. Schroet), particularly on genetically uniform hybrids. Estimated annual grain yield loss due to downy mildew is approximately 10?80 % (2-7). Pathotype 1 has been reported to be the highly virulent pathotype of Sclerospora graminicola in India (8). We report a de novo whole genome assembly and analysis of Sclerospora graminicola pathotype 1 from India. A susceptible pearl millet genotype Tift 23D2B1P1-P5 was used for obtaining single-zoospore isolates from the original oosporic sample. The library for whole genome sequencing was prepared according to the instructions by NEB ultra DNA library kit for Illumina (New England Biolabs, USA). The libraries were normalised, pooled and sequenced on Illumina HiSeq 2500 (Illumina Inc., San Diego, CA, USA) platform at 2 x100 bp length. Mate pair (MP) libraries were prepared using the Nextera mate pair library preparation kit (Illumina Inc., USA). 1 ?g of Genomic DNA was subject to tagmentation and was followed by strand displacement. Size selection tagmented/strand displaced DNA was carried out using AmpureXP beads. The libraries were validated using an Agilent Bioanalyser using DNA HS chip. The libraries were normalised, pooled and sequenced on Illumina MiSeq (Illumina Inc., USA) platform at 2 x300 bp length. The whole genome sequencing was performed by sequencing of 7.38 Gb with 73,889,924 paired end reads from paired end library, and 1.15 Gb with 3,851,788 reads from mate pair library generated from Illumina HiSeq2500 and Illumina MiSeq, respectively. The sequences were assembled using various assemblers like ABySS, MaSuRCA, Velvet, SOAPdenovo2, and ALLPATHS-LG. The assembly generated by MaSuRCA (9) algorithm was observed superior over other algorithms and hence used for scaffolding using SSPACE. Assembled draft genome sequence of S. graminicola pathotype 1 was 299,901,251 bp long, with a 47.2 % GC content consisting of 26,786 scaffolds with N50 of 17,909 bp with longest scaffold size of 238,843 bp. The overall coverage was 40X. The draft genome sequence was used for gene prediction using AUGUSTUS. The completeness of the assembly was investigated using CEGMA and revealed 92.74% proteins completely present and 95.56% proteins partially present, while BUSCO fungal dataset indicated 64.9% complete, 12.4% fragmented, 22.7% missing out of 290 BUSCO groups. A total of 52,285 predicted genes were annotated using BLASTX and 38,120 genes were observed with significant BLASTX match. Repetitive element analysis in the assembly revealed 8,196 simple repeats, 1,058 low complexity repeats and 5,562 dinucleotide to hexanucleotide microsatellite repeats.publishersversionPeer reviewe

    Long-Term Weekly Iron-Folic Acid and De-Worming Is Associated with Stabilised Haemoglobin and Increasing Iron Stores in Non-Pregnant Women in Vietnam

    Get PDF
    BACKGROUND: The prevalence of anaemia and iron deficiency in women remains high worldwide. WHO recommends weekly iron-folic acid supplementation where anaemia rates in non-pregnant women of reproductive age are higher than 20%. In 2006, a demonstration project consisting of weekly iron-folic acid supplementation and regular de-worming was set up in two districts in a northern province in Vietnam where anaemia and hookworm rates were 38% and 76% respectively. In 2008 the project was expanded to all districts in the province, targeting some 250,000 women. The objectives of this study were to: 1) examine changes in haemoglobin, iron stores and soil transmitted helminth infection prevalence over three years and 2) assess women's access to and compliance with the intervention. METHODS AND FINDINGS: The study was a semi-cross-sectional, semi-longitudinal panel design with a baseline survey, three impact surveys at three-, twelve- and thirty months after commencement of the intervention, and three compliance surveys after ten weeks, eighteen and thirty six months. RESULTS: After thirty months, mean haemoglobin stabilised at 130.3 g/L, an increase of 8.2 g/L from baseline, and mean serum ferritin rose from 23.9 µg/L to 52 µg/L. Hookworm prevalence fell from 76% to 22% over the same period. After thirty six months, 81% of the target population were receiving supplements and 87% were taking 75% or more of the supplements they received. CONCLUSIONS: Weekly iron-folic acid supplementation and regular de-worming was effective in significantly and sustainably reducing the prevalence of anaemia and soil transmitted helminth infections and high compliance rates were maintained over three years
    corecore