7 research outputs found

    Young people's experiences of managing Type 1 diabetes at university: a national study of UK university students

    Get PDF
    Aim: Little is known about the challenges of transitioning from school to university for young people with Type 1 diabetes. In a national survey, we investigated the impact of entering and attending university on diabetes self‐care in students with Type 1 diabetes in all UK universities. Methods: Some 1865 current UK university students aged 18–24 years with Type 1 diabetes, were invited to complete a structured questionnaire. The association between demographic variables and diabetes variables was assessed using logistic regression models. Results: In total, 584 (31%) students from 64 hospitals and 37 university medical practices completed the questionnaire. Some 62% had maintained routine diabetes care with their home team, whereas 32% moved to the university provider. Since starting university, 63% reported harder diabetes management and 44% reported higher HbA1c levels than before university. At university, 52% had frequent hypoglycaemia, 9.6% reported one or more episodes of severe hypoglycaemia and 26% experienced diabetes‐related hospital admissions. Female students and those who changed healthcare provider were approximately twice as likely to report poor glycaemic control, emergency hospital admissions and frequent hypoglycaemia. Females were more likely than males to report stress [odds ratio (OR) 4.78, 95% confidence interval (CI) 3.19–7.16], illness (OR 3.48, 95% CI 2.06–5.87) and weight management issues (OR 3.19, 95% CI 1.99–5.11) as barriers to self‐care. Despite these difficulties, 91% of respondents never or rarely contacted university support services about their diabetes. Conclusion: The study quantifies the high level of risk experienced by students with Type 1 diabetes during the transition to university, in particular, female students and those moving to a new university healthcare provider

    Chromosome 6q24 transient neonatal diabetes mellitus and protein sensitive hyperinsulinaemic hypoglycaemia

    No full text
    Aim: We describe the novel clinical observation of protein induced hyperinsulinaemic hypoglycaemia following remission of transient neonatal diabetes mellitus (TNDM) in a patient with 6q24 methylation defect.Methods: A male infant of non-consanguineous Caucasian parents, born at 40 weeks of gestation with a birth weight of 3330 g (–0.55 standard deviation score) presented with hyperglycaemia in the first week of life and was diagnosed with 6q24 TNDM. At 22 months of age, he developed recurrent hypoglycaemic episodes. Controlled diagnostic fast, oral glucose tolerance test, protein loading test and mixed meal tolerance test were undertaken. Sequencing of ABCC8, KCNJ11, GLUD1 and HADH were performed.Results: Investigations suggested a diagnosis of protein sensitive hyperinsulinaemic hypoglycaemia with normal serum ammonia, acylcarnitine profile and urine organic acids. Sequencing of ABCC8, KCNJ11, GLUD1 and HADH did not identify a pathogenic mutation to explain his hyperinsulinaemic hypoglycaemia.Conclusion: This clinical case demonstrates the novel observation of protein sensitive hyperinsulinaemic hypoglycaemia in a patient with 6q24 TNDM. Long-term follow-up of patients with chromosome 6q24 TNDM is warranted following remission

    SMAD3 mutation in LDS3 causes bone fragility by impairing the TGF-β pathway and enhancing osteoclastogenesis

    Get PDF
    Loss-of-function mutations in SMAD3 cause Loeys-Dietz syndrome type 3 (LDS3), a rare autosomal-dominant connective tissue disorder characterized by vascular pathology and skeletal abnormalities. Dysregulation of TGF-β/SMAD signaling is associated with abnormal skeletal features and bone fragility. To date, histomorphometric and ultrastructural characteristics of bone with SMAD3 mutations have not been reported in humans and the exact mechanism by which SMAD3 mutations cause the LDS3 phenotype is poorly understood. Here, we investigated bone histomorphometry and matrix mineralization in human bone with a SMAD3 mutation and explored the associated cellular defect in the TGF-β/SMAD pathway in vitro. The index patient had recurrent fractures, mild facial dysmorphism, arachnodactyly, pectus excavatum, chest asymmetry and kyphoscoliosis. Bone histomorphometry revealed markedly reduced cortical thickness (−68 %), trabecular thickness (−32 %), bone formation rate (−50 %) and delayed mineralization. Quantitative backscattered electron imaging demonstrated undermineralized bone matrix with increased heterogeneity in mineralization. The patient's SMAD3 mutation (c.200 T > G; p.I67S), when expressed from plasmid vectors in HEK293 cells, showed reduced phosphorylation and transcription factor activity compared to normal control and SMAD3 (p.S264Y), a gain-of-function mutation, somatic mosaicism of which causes melorheostosis. Transfection study of the patients' SMAD3 (p.I67S) mutation displayed lower luciferase reporter activity than normal SMAD3 and reduced expression of TGF-β signaling target genes. Patient fibroblasts also demonstrated impaired SMAD3 protein stability. Osteoclastogenic differentiation significantly increased and osteoclast-associated genes, including ACP5 (encoding TRAP), ATP6V0D2, and DCSTAMP, were up-regulated in CD14 (+) peripheral blood mononuclear cells (PBMCs) with the SMAD3 (p.I67S) mutation. Upregulation of osteoclastogenic genes was associated with decreased expression of TGF-β signaling target genes. We conclude that bone with the SMAD3 (p.I67S) mutation features reduced bone formation, and our functional studies revealed decreased SMAD3 activation and protein stability as well as increased osteoclastogenesis. These findings enhance our understanding of the pathophysiology of LDS3 caused by SMAD3 mutations. Emerging therapies targeting in the TGF-β/SMAD pathway also raise hope for treatment of LDS3

    Mutational analysis of the adaptor protein 2 sigma subunit (AP2S1) gene:search for autosomal dominant hypocalcemia type 3 (ADH3)

    No full text
    CONTEXT: Autosomal dominant hypocalcemia (ADH) types 1 and 2 are due to calcium-sensing receptor (CASR) and G-protein subunit-ι11 (GNA11) gain-of-function mutations, respectively, whereas CASR and GNA11 loss-of-function mutations result in familial hypocalciuric hypercalcemia (FHH) types 1 and 2, respectively. Loss-of-function mutations of adaptor protein-2 sigma subunit (AP2σ 2), encoded by AP2S1, cause FHH3, and we therefore sought for gain-of-function AP2S1 mutations that may cause an additional form of ADH, which we designated ADH3. OBJECTIVE: The objective of the study was to investigate the hypothesis that gain-of-function AP2S1 mutations may cause ADH3. DESIGN: The sample size required for the detection of at least one mutation with a greater than 95% likelihood was determined by binomial probability analysis. Nineteen patients (including six familial cases) with hypocalcemia in association with low or normal serum PTH concentrations, consistent with ADH, but who did not have CASR or GNA11 mutations, were ascertained. Leukocyte DNA was used for sequence and copy number variation analysis of AP2S1. RESULTS: Binomial probability analysis, using the assumption that AP2S1 mutations would occur in hypocalcemic patients at a prevalence of 20%, which is observed in FHH patients without CASR or GNA11 mutations, indicated that the likelihood of detecting at least one AP2S1 mutation was greater than 95% and greater than 98% in sample sizes of 14 and 19 hypocalcemic patients, respectively. AP2S1 mutations and copy number variations were not detected in the 19 hypocalcemic patients. CONCLUSION: The absence of AP2S1 abnormalities in hypocalcemic patients, suggests that ADH3 may not occur or otherwise represents a rare hypocalcemic disorder

    Regiospecific Formation and Unusual Optical Properties of 2,5-Bis(arylethynyl)rhodacyclopentadienes: A New Class of Luminescent Organometallics

    No full text
    A series of 2,5-bis(arylethynyl)rhodacyclopentadienes has been prepared by a rare example of regiospecific reductive coupling of 1,4-(p-R-phenyl)-1,3-butadiynes (R[DOUBLE BOND]H, Me, OMe, SMe, NMe2, CF3, CO2Me, CN, NO2, −C[TRIPLE BOND]C-(p-C6H4[BOND]NHex2), −C[TRIPLE BOND]C[BOND](p-C6H4[BOND]CO2Oct)) at [RhX(PMe3)4] (1) (X=−C[TRIPLE BOND]C[BOND]SiMe3 (a), −C[TRIPLE BOND]C-(p-C6H4[BOND]NMe2) (b), −C[TRIPLE BOND]C[BOND]C[TRIPLE BOND]C[BOND](p-C6H4[BOND]NPh2) (c) or [BOND]C[TRIPLE BOND]C[BOND]{p-C6H4-C[TRIPLE BOND]C[BOND](p-C6H4-N(C6H13)2)} (d) or Me (e)), giving the 2,5-bis(arylethynyl) isomer exclusively. The rhodacyclopentadienes bearing a methyl ligand in the equatorial plane (compound 1 e) have been converted into their chloro analogues by reaction with HCl etherate. The rhodacycles thus obtained are stable to air and moisture in the solid state and the acceptor-substituted compounds are even stable to air and moisture in solution. The photophysical properties of the rhodacyclopentadienes are highly unusual in that they exhibit, exclusively, fluorescence between 500–800 nm from the S1 state, with quantum yields of Φ=0.01–0.18 and short lifetimes (τ=0.45–8.20 ns). The triplet state formation (ΦISC=0.57 for 2 a) is exceptionally slow, occurring on the nanosecond timescale. This is unexpected, because the Rh atom should normally facilitate intersystem crossing within femto- to picoseconds, leading to phosphorescence from the T1 state. This work therefore highlights that in some transition-metal complexes, the heavy atom can play a more subtle role in controlling the photophysical behavior than is commonly appreciated

    Gene expression signature predicts rate of type 1 diabetes progressionResearch in context

    No full text
    Summary: Background: Type 1 diabetes is a complex heterogenous autoimmune disease without therapeutic interventions available to prevent or reverse the disease. This study aimed to identify transcriptional changes associated with the disease progression in patients with recent-onset type 1 diabetes. Methods: Whole-blood samples were collected as part of the INNODIA study at baseline and 12 months after diagnosis of type 1 diabetes. We used linear mixed-effects modelling on RNA-seq data to identify genes associated with age, sex, or disease progression. Cell-type proportions were estimated from the RNA-seq data using computational deconvolution. Associations to clinical variables were estimated using Pearson's or point-biserial correlation for continuous and dichotomous variables, respectively, using only complete pairs of observations. Findings: We found that genes and pathways related to innate immunity were downregulated during the first year after diagnosis. Significant associations of the gene expression changes were found with ZnT8A autoantibody positivity. Rate of change in the expression of 16 genes between baseline and 12 months was found to predict the decline in C-peptide at 24 months. Interestingly and consistent with earlier reports, increased B cell levels and decreased neutrophil levels were associated with the rapid progression. Interpretation: There is considerable individual variation in the rate of progression from appearance of type 1 diabetes-specific autoantibodies to clinical disease. Patient stratification and prediction of disease progression can help in developing more personalised therapeutic strategies for different disease endotypes. Funding: A full list of funding bodies can be found under Acknowledgments
    corecore