39 research outputs found

    On the origin of grain size effects in Ba(Ti0.96Sn0.04)O3 perovskite ceramics

    Get PDF
    Over the last 50 years, the study of grain size effects in ferroelectric ceramics has attracted great research interest. Although different theoretical models have been proposed to account for the variation in structure and properties of ferroelectrics with respect to the size of structural grains, the underlying mechanisms are still under debate. Here, we report the results of a study on the influence of grain size on the structural and physical properties of Ba(Ti0.96Sn0.04)O3 (BTS), a ferroelectric compound that represents a model perovskite system, where the effects of point defects, stoichiometry imbalance and phase transitions are minimized by chemical substitution. It was found that different microscopic mechanisms are responsible for the different grain size dependences observed in BTS. High permittivity is achieved in fine-grained BTS ceramics due to high domain wall density and polar nanoregions; high d33 is obtained in coarse-grained ceramics due to a high degree of domain alignment during poling; large electric field-induced strain in intermediate-grained ceramics is an outcome of a favorable interplay between constraints from grain boundaries and reversible reorientation of non-180° domains and polar nanoregions. These paradigms can be regarded as general guidelines for the optimization of specific properties of ferroelectric ceramics through grain size control

    Phase evolution and electrical behaviour of samarium-substituted bismuth ferrite ceramics

    Get PDF
    Bi1-xSmxFeO3 (x = 0.15–0.18) ceramics with high density were produced using spark plasma sintering. The effects of composition, synthesis conditions and temperature on the phase evolution were studied, using XRD, TEM and dielectric spectroscopy. The coexistence of the ferroelectric R3c, antiferroelectric Pnam and paraelectric Pnma phases was revealed, with relative phase fractions affected by both calcination conditions and Sm concentration. Experiments on powdered samples calcined at different temperatures up to 950 °C suggest higher calcination temperatures promote Sm diffusion, allowing samples to reach compositional homogeneity. The structural transitions from the Pnam and R3c phases to the Pnma phase were comprehensively investigated, with phase transition temperatures clearly identified. The dielectric permittivity, electrical resistivity and breakdown strength were increased upon Sm-substitution, while ferroelectric switching was suppressed. The polarization-electric field loop became increasingly narrow with increasing Sm-content, but double hysteresis loops, which may reflect a reversible antiferroelectric to ferroelectric transformation, were not observed

    Phase evolution and electrical behaviour of samarium-substituted bismuth ferrite ceramics

    Get PDF
    Bi1-xSmxFeO3 (x = 0.15–0.18) ceramics with high density were produced using spark plasma sintering. The effects of composition, synthesis conditions and temperature on the phase evolution were studied, using XRD, TEM and dielectric spectroscopy. The coexistence of the ferroelectric R3c, antiferroelectric Pnam and paraelectric Pnma phases was revealed, with relative phase fractions affected by both calcination conditions and Sm concentration. Experiments on powdered samples calcined at different temperatures up to 950 °C suggest higher calcination temperatures promote Sm diffusion, allowing samples to reach compositional homogeneity. The structural transitions from the Pnam and R3c phases to the Pnma phase were comprehensively investigated, with phase transition temperatures clearly identified. The dielectric permittivity, electrical resistivity and breakdown strength were increased upon Sm-substitution, while ferroelectric switching was suppressed. The polarization-electric field loop became increasingly narrow with increasing Sm-content, but double hysteresis loops, which may reflect a reversible antiferroelectric to ferroelectric transformation, were not observed

    Quantum Gates and Memory using Microwave Dressed States

    Full text link
    Trapped atomic ions have been successfully used for demonstrating basic elements of universal quantum information processing (QIP). Nevertheless, scaling up of these methods and techniques to achieve large scale universal QIP, or more specialized quantum simulations remains challenging. The use of easily controllable and stable microwave sources instead of complex laser systems on the other hand promises to remove obstacles to scalability. Important remaining drawbacks in this approach are the use of magnetic field sensitive states, which shorten coherence times considerably, and the requirement to create large stable magnetic field gradients. Here, we present theoretically a novel approach based on dressing magnetic field sensitive states with microwave fields which addresses both issues and permits fast quantum logic. We experimentally demonstrate basic building blocks of this scheme to show that these dressed states are long-lived and coherence times are increased by more than two orders of magnitude compared to bare magnetic field sensitive states. This changes decisively the prospect of microwave-driven ion trap QIP and offers a new route to extend coherence times for all systems that suffer from magnetic noise such as neutral atoms, NV-centres, quantum dots, or circuit-QED systems.Comment: 9 pages, 4 figure

    Comparison of printed glycan array, suspension array and ELISA in the detection of human anti-glycan antibodies

    Get PDF
    Anti-glycan antibodies represent a vast and yet insufficiently investigated subpopulation of naturally occurring and adaptive antibodies in humans. Recently, a variety of glycan-based microarrays emerged, allowing high-throughput profiling of a large repertoire of antibodies. As there are no direct approaches for comparison and evaluation of multi-glycan assays we compared three glycan-based immunoassays, namely printed glycan array (PGA), fluorescent microsphere-based suspension array (SA) and ELISA for their efficacy and selectivity in profiling anti-glycan antibodies in a cohort of 48 patients with and without ovarian cancer. The ABO blood group glycan antigens were selected as well recognized ligands for sensitivity and specificity assessments. As another ligand we selected P1, a member of the P blood group system recently identified by PGA as a potential ovarian cancer biomarker. All three glyco-immunoassays reflected the known ABO blood groups with high performance. In contrast, anti-P1 antibody binding profiles displayed much lower concordance. Whilst anti-P1 antibody levels between benign controls and ovarian cancer patients were significantly discriminated using PGA (p = 0.004), we got only similar results using SA (p = 0.03) but not for ELISA. Our findings demonstrate that whilst assays were largely positively correlated, each presents unique characteristic features and should be validated by an independent patient cohort rather than another array technique. The variety between methods presumably reflects the differences in glycan presentation and the antigen/antibody ratio, assay conditions and detection technique. This indicates that the glycan-antibody interaction of interest has to guide the assay selection

    Mitochondrial DNA Backgrounds Might Modulate Diabetes Complications Rather than T2DM as a Whole

    Get PDF
    Mitochondrial dysfunction has been implicated in rare and common forms of type 2 diabetes (T2DM). Additionally, rare mitochondrial DNA (mtDNA) mutations have been shown to be causal for T2DM pathogenesis. So far, many studies have investigated the possibility that mtDNA variation might affect the risk of T2DM, however, when found, haplogroup association has been rarely replicated, even in related populations, possibly due to an inadequate level of haplogroup resolution. Effects of mtDNA variation on diabetes complications have also been proposed. However, additional studies evaluating the mitochondrial role on both T2DM and related complications are badly needed. To test the hypothesis of a mitochondrial genome effect on diabetes and its complications, we genotyped the mtDNAs of 466 T2DM patients and 438 controls from a regional population of central Italy (Marche). Based on the most updated mtDNA phylogeny, all 904 samples were classified into 57 different mitochondrial sub-haplogroups, thus reaching an unprecedented level of resolution. We then evaluated whether the susceptibility of developing T2DM or its complications differed among the identified haplogroups, considering also the potential effects of phenotypical and clinical variables. MtDNA backgrounds, even when based on a refined haplogroup classification, do not appear to play a role in developing T2DM despite a possible protective effect for the common European haplogroup H1, which harbors the G3010A transition in the MTRNR2 gene. In contrast, our data indicate that different mitochondrial haplogroups are significantly associated with an increased risk of specific diabetes complications: H (the most frequent European haplogroup) with retinopathy, H3 with neuropathy, U3 with nephropathy, and V with renal failure

    Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence

    Get PDF
    Phosphate is an essential macronutrient required for cell growth and division. Pho84 is the major high-affinity cell-surface phosphate importer of Saccharomyces cerevisiae and a crucial element in the phosphate homeostatic system of this model yeast. We found that loss of Candida albicans Pho84 attenuated virulence in Drosophila and murine oropharyngeal and disseminated models of invasive infection, and conferred hypersensitivity to neutrophil killing. Susceptibility of cells lacking Pho84 to neutrophil attack depended on reactive oxygen species (ROS): pho84-/- cells were no more susceptible than wild type C. albicans to neutrophils from a patient with chronic granulomatous disease, or to those whose oxidative burst was pharmacologically inhibited or neutralized. pho84-/- mutants hyperactivated oxidative stress signalling. They accumulated intracellular ROS in the absence of extrinsic oxidative stress, in high as well as low ambient phosphate conditions. ROS accumulation correlated with diminished levels of the unique superoxide dismutase Sod3 in pho84-/- cells, while SOD3 overexpression from a conditional promoter substantially restored these cells’ oxidative stress resistance in vitro. Repression of SOD3 expression sharply increased their oxidative stress hypersensitivity. Neither of these oxidative stress management effects of manipulating SOD3 transcription was observed in PHO84 wild type cells. Sod3 levels were not the only factor driving oxidative stress effects on pho84-/- cells, though, because overexpressing SOD3 did not ameliorate these cells’ hypersensitivity to neutrophil killing ex vivo, indicating Pho84 has further roles in oxidative stress resistance and virulence. Measurement of cellular metal concentrations demonstrated that diminished Sod3 expression was not due to decreased import of its metal cofactor manganese, as predicted from the function of S. cerevisiae Pho84 as a low-affinity manganese transporter. Instead of a role of Pho84 in metal transport, we found its role in TORC1 activation to impact oxidative stress management: overexpression of the TORC1-activating GTPase Gtr1 relieved the Sod3 deficit and ROS excess in pho84-/- null mutant cells, though it did not suppress their hypersensitivity to neutrophil killing or hyphal growth defect. Pharmacologic inhibition of Pho84 by small molecules including the FDA-approved drug foscarnet also induced ROS accumulation. Inhibiting Pho84 could hence support host defenses by sensitizing C. albicans to oxidative stress

    On the origin of grain size effects in Ba(Ti<inf>0.96</inf>Sn<inf>0.04</inf>)O<inf>3</inf> perovskite ceramics

    No full text
    Over the last 50 years, the study of grain size effects in ferroelectric ceramics has attracted great research interest. Although different theoretical models have been proposed to account for the variation in structure and properties of ferroelectrics with respect to the size of structural grains, the underlying mechanisms are still under debate. Here, we report the results of a study on the influence of grain size on the structural and physical properties of Ba(Ti0.96Sn0.04)O3 (BTS), a ferroelectric compound that represents a model perovskite system, where the effects of point defects, stoichiometry imbalance and phase transitions are minimized by chemical substitution. It was found that different microscopic mechanisms are responsible for the different grain size dependences observed in BTS. High permittivity is achieved in fine-grained BTS ceramics due to high domain wall density and polar nanoregions; high d33 is obtained in coarse-grained ceramics due to a high degree of domain alignment during poling; large electric field-induced strain in intermediate-grained ceramics is an outcome of a favorable interplay between constraints from grain boundaries and reversible reorientation of non-180° domains and polar nanoregions. These paradigms can be regarded as general guidelines for the optimization of specific properties of ferroelectric ceramics through grain size control

    In situ study of the gelatinase activity in demineralized dentin from rat molar teeth

    No full text
    Matrix metalloproteinases (MMPs) in dentin are believed to participate in various physiological and pathological events in coronal dentin, but their exact source and location is not clear. The purpose of this study was to evaluate the activity of gelatinases in decalcified rat molars crowns by in situ zymography. Hemi-mandibles of five male Wistar rats were fixed in paraformaldehyde, decalcified in EDTA and glycerol solution and embedded in paraffin. Sections from the region of molar teeth were incubated with or without DQ gelatin in 50 mM Tris-CaCl2 at 37 degrees C for 2 h and observed by means of confocal microscopy. Gelatinolytic activity was observed throughout the coronal dentin with varying intensities in different locations. High gelatinase activity was observed in the dentinal tubules, dentin-enamel junction (DEJ) and predentin, and it was weaker and less uniform in the intertubular dentin. This study shows that the location of gelatinase and relative activity can be detected by means of in situ zymography and confocal microcopy, and this methodology may provide a useful tool in studies on the role of gelatinases in tooth development, maturation and in pathological conditions. (C) 2012 Elsevier GmbH. All rights reserved.115324525
    corecore