90 research outputs found

    Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting.

    Get PDF
    In natural photosynthesis, light is used for the production of chemical energy carriers to fuel biological activity. The re-engineering of natural photosynthetic pathways can provide inspiration for sustainable fuel production and insights for understanding the process itself. Here, we employ a semiartificial approach to study photobiological water splitting via a pathway unavailable to nature: the direct coupling of the water oxidation enzyme, photosystem II, to the H2 evolving enzyme, hydrogenase. Essential to this approach is the integration of the isolated enzymes into the artificial circuit of a photoelectrochemical cell. We therefore developed a tailor-made hierarchically structured indium-tin oxide electrode that gives rise to the excellent integration of both photosystem II and hydrogenase for performing the anodic and cathodic half-reactions, respectively. When connected together with the aid of an applied bias, the semiartificial cell demonstrated quantitative electron flow from photosystem II to the hydrogenase with the production of H2 and O2 being in the expected two-to-one ratio and a light-to-hydrogen conversion efficiency of 5.4% under low-intensity red-light irradiation. We thereby demonstrate efficient light-driven water splitting using a pathway inaccessible to biology and report on a widely applicable in vitro platform for the controlled coupling of enzymatic redox processes to meaningfully study photocatalytic reactions.This work was supported by the U.K. Engineering and Physical Sciences Research Council (EP/H00338X/2 to E.R. and EP/G037221/1, nanoDTC, to D.M.), the UK Biology and Biotechnological Sciences Research Council (BB/K002627/1 to A.W.R. and BB/K010220/1 to E.R.), a Marie Curie Intra-European Fellowship (PIEF-GA-2013-625034 to C.Y.L), a Marie Curie International Incoming Fellowship (PIIF-GA-2012-328085 RPSII to J.J.Z) and the CEA and the CNRS (to J.C.F.C.). A.W.R. holds a Wolfson Merit Award from the Royal Society.This is the final version of the article. It first appeared from ACS Publications via http://dx.doi.org/10.1021/jacs.5b0373

    The diversity and distribution of D1 proteins in cyanobacteria

    Get PDF
    The psbA gene family in cyanobacteria encodes different forms of the D1 protein that is part of the Photosystem II reaction centre. We have identified a phylogenetically distinct D1 group that is intermediate between previously identified G3-D1 and G4-D1 proteins (Cardona et al. Mol Biol Evol 32:1310–1328, 2015). This new group contained two subgroups: D1INT, which was frequently in the genomes of heterocystous cyanobacteria and D1FR that was part of the far-red light photoacclimation gene cluster of cyanobacteria. In addition, we have identified subgroups within G3, the micro-aerobically expressed D1 protein. There are amino acid changes associated with each of the subgroups that might affect the function of Photosystem II. We show a phylogenetically broad range of cyanobacteria have these D1 types, as well as the genes encoding the G2 protein and chlorophyll f synthase. We suggest identification of additional D1 isoforms and the presence of multiple D1 isoforms in phylogenetically diverse cyanobacteria supports the role of these proteins in conferring a selective advantage under specific conditions

    Conservatism and adaptability during squirrel radiation : what is mandible shape telling us?

    Get PDF
    SYNTHESYS Project from the European Community Research Infrastructure (NL-TAF-4084)Both functional adaptation and phylogeny shape the morphology of taxa within clades. Herein we explore these two factors in an integrated way by analyzing shape and size variation in the mandible of extant squirrels using landmark-based geometric morphometrics in combination with a comparative phylogenetic analysis. Dietary specialization and locomotion were found to be reliable predictors of mandible shape, with the prediction by locomotion probably reflecting the underlying diet. In addition a weak but significant allometric effect could be demonstrated. Our results found a strong phylogenetic signal in the family as a whole as well as in the main clades, which is in agreement with the general notion of squirrels being a conservative group. This fact does not preclude functional explanations for mandible shape, but rather indicates that ancient adaptations kept a prominent role, with most genera having diverged little from their ancestral clade morphologies. Nevertheless, certain groups have evolved conspicuous adaptations that allow them to specialize on unique dietary resources. Such adaptations mostly occurred in the Callosciurinae and probably reflect their radiation into the numerous ecological niches of the tropical and subtropical forests of Southeastern Asia. Our dietary reconstruction for the oldest known fossil squirrels (Eocene, 36 million years ago) show a specialization on nuts and seeds, implying that the development from protrogomorphous to sciuromorphous skulls was not necessarily related to a change in diet

    Towards more efficient longline fisheries: fish feeding behaviour, bait characteristics and development of alternative baits

    Get PDF

    Cp* versus Bis-carbonyl Iridium Precursors as CH Oxidation Precatalysts

    Get PDF
    We previously reported a dimeric Ir<sup>IV</sup>-oxo species as the active water oxidation catalyst formed from a Cp*Ir­(pyalc)Cl {pyalc = 2-(2′-pyridyl)-2-propanoate} precursor, where the Cp* is lost to oxidative degradation during catalyst activation; this system can also oxidize unactivated CH bonds. We now show that the same Cp*Ir­(pyalc)­Cl precursor leads to two distinct active catalysts for CH oxidation. In the presence of external CH substrate, the Cp* remains ligated to the Ir center during catalysis; the active specieslikely a high-valent Cp*Ir­(pyalc) specieswill oxidize the substrate instead of its own Cp*. If there is no external CH substrate in the reaction mixture, the Cp* will be oxidized and lost, and the active species is then an iridium-μ-oxo dimer. Additionally, the recently reported Ir­(CO)<sub>2</sub>(pyalc) water oxidation precatalyst is now found to be an efficient, stereoretentive CH oxidation precursor. We compare the reactivity of Ir­(CO)<sub>2</sub>(pyalc) and Cp*Ir­(pyalc)­Cl precursors and show that both can lose their placeholder ligands, CO or Cp*, to form substantially similar dimeric Ir<sup>IV</sup>-oxo catalyst resting states. The more efficient activation of the bis-carbonyl precursor makes it less inhibited by obligatory byproducts formed from Cp* degradation, and therefore the dicarbonyl is our preferred precatalyst for oxidation catalysis
    corecore