8 research outputs found

    Trypanosoma brucei BRCA2 acts in a life cycle-specific genome stability process and dictates BRC repeat number-dependent RAD51 subnuclear dynamics

    Get PDF
    Trypanosoma brucei survives in mammals through antigenic variation, which is driven by RAD51-directed homologous recombination of Variant Surface Glycoproteins (VSG) genes, most of which reside in a subtelomeric repository of >1000 silent genes. A key regulator of RAD51 is BRCA2, which in T. brucei contains a dramatic expansion of a motif that mediates interaction with RAD51, termed the BRC repeats. BRCA2 mutants were made in both tsetse fly-derived and mammal-derived T. brucei, and we show that BRCA2 loss has less impact on the health of the former. In addition, we find that genome instability, a hallmark of BRCA2 loss in other organisms, is only seen in mammal-derived T. brucei. By generating cells expressing BRCA2 variants with altered BRC repeat numbers, we show that the BRC repeat expansion is crucial for RAD51 subnuclear dynamics after DNA damage. Finally, we document surprisingly limited co-localization of BRCA2 and RAD51 in the T. brucei nucleus, and we show that BRCA2 mutants display aberrant cell division, revealing a function distinct from BRC-mediated RAD51 interaction. We propose that BRCA2 acts to maintain the huge VSG repository of T. brucei, and this function has necessitated the evolution of extensive RAD51 interaction via the BRC repeats, allowing re-localization of the recombinase to general genome damage when needed

    Prehospital Prasugrel Versus Ticagrelor in Real-World Patients with ST-Elevation Myocardial Infarction Referred for Primary PCI: Procedural and 30-Day Outcomes

    No full text
    OBJECTIVES: Pretreatment with P2Y12 inhibitors before primary percutaneous coronary intervention (PPCI) can reduce the incidence of major adverse cardiovascular event (MACE) rate in ST-segment elevation myocardial infarction (STEMI) patients. We investigated differences in coronary reperfusion and clinical outcomes between prehospital administration of prasugrel vs ticagrelor in a historical cohort analysis. METHODS AND RESULTS: We conducted a retrospective analysis of prospectively collected data of 533 STEMI patients, directly referred by the ambulance for PPCI, and pretreated with either prasugrel (2013-2014) or ticagrelor (2015-2016). The primary outcome measurement was coronary and myocardial reperfusion prior to and after intervention. Secondary outcome measurements included MACE and stent thrombosis (ST) at 30 days. The median time from first medical contact to balloon was 82 minutes. There was no significant difference in preprocedural and postprocedural coronary reperfusion (TIMI flow grade 3) and postprocedural ST-segment elevation resolution between the prasugrel and ticagrelor groups. No significant differences in MACE and ST rates were found between the groups. No fatal or intracranial bleedings were reported up to 30-day follow-up. CONCLUSIONS: Prehospital administration of both prasugrel and ticagrelor in STEMI patients is safe, without differences in preprocedural and postprocedural reperfusion and short-term clinical outcomes

    Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy According to Revised 2010 Task Force Criteria With Inclusion of Non-Desmosomal Phospholamban Mutation Carriers

    No full text
    <p>Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is frequently associated with desmosomal mutations. However, nondesmosomal mutations may be involved. The aim of this study was to assess the contribution of a phospholamban (PLN) gene mutation to ARVD/C diagnosis according to the revised 2010 task force criteria (TFC). In 142 Dutch patients (106 men, mean. age 51 +/- 13 years) with proven ARVD/C (fulfillment of 2010 TFC for diagnosis), 5 known desmosomal genes (PKP2, DSP, DSC2, DSG2, and JUP) and the nondesmosomal PLN gene were screened. After genetic analysis, phenotypic characteristics of desmosomal versus PLN mutation carriers were compared. In 59 of 142 patients with ARYD/C (42%), no desmosomal mutation was found. In 19 of 142 patients (13%), the PLN founder mutation c.40_42delAGA (p.Arg14del) was identified. PLN mutation carriers more often had low-voltage electrocardiograms (p = 0.004), inverted T waves in leads V-4 to V-6 (p</p>

    Remodeling of the cardiac sodium channel, connexin 43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy.

    No full text
    Background Arrhythmogenic cardiomyopathy (AC) is closely associated with desmosomal mutations in a majority of patients. Arrhythmogenesis in patients with AC is likely related to remodeling of cardiac gap junctions and increased levels of fibrosis. Recently, using experimental models, we also identified sodium channel dysfunction secondary to desmosomal dysfunction. Objective To assess the immunoreactive signal levels of the sodium channel protein NaV1.5, as well as connexin43 (Cx43) and plakoglobin (PKG), in myocardial specimens obtained from patients with AC. Methods Left and right ventricular free wall postmortem material was obtained from 5 patients with AC and 5 controls matched for age and sex. Right ventricular septal biopsies were taken from another 15 patients with AC. All patients fulfilled the 2010 revised Task Force Criteria for the diagnosis of AC. Immunohistochemical analyses were performed using antibodies against Cx43, PKG, NaV1.5, plakophilin-2, and N-cadherin. Results N-cadherin and desmoplakin immunoreactive signals and distribution were normal in patients with AC compared to controls. Plakophilin-2 signals were unaffected unless a plakophilin-2 mutation predicting haploinsufficiency was present. Distribution was unchanged compared to that in controls. Immunoreactive signal levels of PKG, Cx43, and NaV1.5 were disturbed in 74%, 70%, and 65% of the patients, respectively. Conclusions A reduced immunoreactive signal of PKG, Cx43, and NaV1.5 at the intercalated disks can be observed in a large majority of the patients. Decreased levels of Nav1.5 might contribute to arrhythmia vulnerability and, in the future, potentially could serve as a new clinically relevant tool for risk assessment strategies

    Lupus anticoagulant associates with thrombosis in patients with COVID-19 admitted to intensive care units: A retrospective cohort study

    No full text
    Background: Thrombosis is a frequent and severe complication in patients with coronavirus disease 2019 (COVID-19) admitted to the intensive care unit (ICU). Lupus anticoagulant (LA) is a strong acquired risk factor for thrombosis in various diseases and is frequently observed in patients with COVID-19. Whether LA is associated with thrombosis in patients with severe COVID-19 is currently unclear. Objective: To investigate if LA is associated with thrombosis in critically ill patients with COVID-19. Patients/Methods: The presence of LA and other antiphospholipid antibodies was assessed in patients with COVID-19 admitted to the ICU. LA was determined with dilute Russell's viper venom time (dRVVT) and LA-sensitive activated partial thromboplastin time (aPTT) reagents. Results: Of 169 patients with COVID-19, 116 (69%) tested positive for at least one antiphospholipid antibody upon admission to the ICU. Forty (24%) patients tested positive for LA; of whom 29 (17%) tested positive with a dRVVT, 19 (11%) tested positive with an LA-sensitive aPTT, and 8 (5%) tested positive on both tests. Fifty-eight (34%) patients developed thrombosis after ICU admission. The odds ratio (OR) for thrombosis in patients with LA based on a dRVVT was 2.5 (95% confidence interval [CI], 1.1–5.7), which increased to 4.5 (95% CI, 1.4–14.3) in patients at or below the median age in this study (64 years). LA positivity based on a dRVVT or LA-sensitive aPTT was only associated with thrombosis in patients aged less than 65 years (OR, 3.8; 95% CI, 1.3–11.4) and disappeared after adjustment for C-reactive protein. Conclusion: Lupus anticoagulant on admission is strongly associated with thrombosis in critically ill patients with COVID-19, especially in patients aged less than 65 years

    Lupus anticoagulant associates with thrombosis in patients with COVID-19 admitted to intensive care units: A retrospective cohort study

    No full text
    Background: Thrombosis is a frequent and severe complication in patients with coronavirus disease 2019 (COVID-19) admitted to the intensive care unit (ICU). Lupus anticoagulant (LA) is a strong acquired risk factor for thrombosis in various diseases and is frequently observed in patients with COVID-19. Whether LA is associated with thrombosis in patients with severe COVID-19 is currently unclear. Objective: To investigate if LA is associated with thrombosis in critically ill patients with COVID-19. Patients/Methods: The presence of LA and other antiphospholipid antibodies was assessed in patients with COVID-19 admitted to the ICU. LA was determined with dilute Russell's viper venom time (dRVVT) and LA-sensitive activated partial thromboplastin time (aPTT) reagents. Results: Of 169 patients with COVID-19, 116 (69%) tested positive for at least one antiphospholipid antibody upon admission to the ICU. Forty (24%) patients tested positive for LA; of whom 29 (17%) tested positive with a dRVVT, 19 (11%) tested positive with an LA-sensitive aPTT, and 8 (5%) tested positive on both tests. Fifty-eight (34%) patients developed thrombosis after ICU admission. The odds ratio (OR) for thrombosis in patients with LA based on a dRVVT was 2.5 (95% confidence interval [CI], 1.1–5.7), which increased to 4.5 (95% CI, 1.4–14.3) in patients at or below the median age in this study (64 years). LA positivity based on a dRVVT or LA-sensitive aPTT was only associated with thrombosis in patients aged less than 65 years (OR, 3.8; 95% CI, 1.3–11.4) and disappeared after adjustment for C-reactive protein. Conclusion: Lupus anticoagulant on admission is strongly associated with thrombosis in critically ill patients with COVID-19, especially in patients aged less than 65 years
    corecore