9 research outputs found

    A collaborative evaluation of LC-MS/MS based methods for BMAA analysis: soluble bound BMAA found to be an important fraction.

    Get PDF
    Exposure to ÎČ-Ν-methylamino-l-alanine (BMAA) might be linked to the incidence of amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson's disease. Analytical chemistry plays a crucial role in determining human BMAA exposure and the associated health risk, but the performance of various analytical methods currently employed is rarely compared. A CYANOCOST initiated workshop was organized aimed at training scientists in BMAA analysis, creating mutual understanding and paving the way towards interlaboratory comparison exercises. During this workshop, we tested different methods (extraction followed by derivatization and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis, or directly followed by LC-MS/MS analysis) for trueness and intermediate precision. We adapted three workup methods for the underivatized analysis of animal, brain and cyanobacterial samples. Based on recovery of the internal standard D3BMAA, the underivatized methods were accurate (mean recovery 80%) and precise (mean relative standard deviation 10%), except for the cyanobacterium Leptolyngbya. However, total BMAA concentrations in the positive controls (cycad seeds) showed higher variation (relative standard deviation 21%-32%), implying that D3BMAA was not a good indicator for the release of BMAA from bound forms. Significant losses occurred during workup for the derivatized method, resulting in low recovery ( < 10%). Most BMAA was found in a trichloroacetic acid soluble, bound form and we recommend including this fraction during analysis

    Internal nutrient loading may increase microcystin concentrations in freshwater lakes by promoting growth of

    No full text
    Nutrient release from lake sediments may increase concentrations of harmful algal toxins – such as microcystins – by stimulating blooms of toxigenic cyanobacteria. This hypothesis is supported by a series of experiments in which intact cores of sediment were incubated under different environmental conditions, after which the water overlying the sediments was harvested as a culture medium for growing a toxic strain of the common cyanobacterium Microcystis. Both littoral and profundal sediments from Lake Kinneret, the largest freshwater lake in Israel, released substantial amounts of dissolved phosphorus (1.0 and 4.0 mg.m−2.d−1, respectively) and nitrogen (44.2 and 24.3 mg.m−2.d−1, respectively) under simulated summer conditions in the laboratory. In comparison, nutrient fluxes from sediments under simulated winter conditions were considerably smaller or negative. The addition of nutrient-rich overlying water harvested from profundal sediments, and to a lesser extent from littoral sediments, increased both chlorophyll a and microcystin concentrations in Microcystis cultures. In contrast, when Microcystis cells were inoculated in natural surface waters only, the cultures did not grow or produce microcystins, and soon collapsed. This study provides experimental evidence of a link between internal nutrient loading from sediments and microcystin concentrations in freshwaters, and demonstrates how environmental factors may indirectly exert control over toxin concentrations in freshwater lakes

    Carbon assimilation and accumulation of cyanophycin during the development of dormant cells (akinetes) in the cyanobacterium Aphanizomenon ovalisporum

    Get PDF
    International audienceAkinetes are spore-like non-motile cells that differentiate from vegetative cells of filamentous cyanobacteria from the order Nostocales. They play a key role in the survival and distribution of these species and contribute to their perennial blooms. Here, we demonstrate variations in cellular ultrastructure during akinete formation concomitant with accumulation of cyanophycin; a copolymer of aspartate and arginine that forms storage granules.Cyanophycin accumulation is initiated in vegetative cells few days post-exposure to akinete inducing conditions. This early accumulated cyanophycin pool in vegetative cells disappears as a near by cell differentiates to an akinete and stores large pool of cyanophycin. During the akinete maturation, the cyanophycin pool is further increased and comprise up to 2% of the akinete volume. The cellular pattern of photosynthetic activity during akinete formation was studied by an ano-metric scale secondary ion mass spectrometry (NanoSIMS) analysis in 13C-enriched cultures. Quantitative estimation of carbon assimilation in vegetative cells and akinetes (filament-attached and-free) indicates that vegetative cells maintain their basal activity while differentiating akinetes gradually reduce their activity. Mature-free akinetes practically lost their photosynthetic activity althoughs mallfraction of free akinetes were still photosynthetically active. Additional 13C pulse-chase experiments indicated rapid carbon turnover during akinete formation and de novo synthesis of cyanophycin in vegetative cells 4 days post-induction of akinete differentiation

    Removal of Cyanotoxins–Microcystins from Water by Filtration through Granulated Composites of Bentonite with Micelles of the Cation Octadecyltrimethyl Ammonium (ODTMA)

    No full text
    Cyanobacteria and their toxins present potential hazards to consumers of water from lakes, reservoirs and rivers; thus, their removal via water treatment is essential. Previously, we demonstrated that nanocomposites of octadecyltrimethyl ammonium (ODTMA) complexed with clay could efficiently remove cyanobacteria and their toxins from laboratory cultures and lake water. In this study, we determined the capacity of ODTMA nanocomposites to remove cyanotoxins, namely microcystins (MCs), from water to below 1 ”g/L via filtration. This capacity was 1500 mg MC-LR per Kg of nanocomposite. Similar capacities were estimated for the removal of other MC congeners (MC-WR, MC-3aspWR and MC-YR), whereas substantially lower capacities were recorded for more positively charged MC congeners, such as MC-RR and MC-3aspRR. Filtration results were simulated with a filtration model, which considers convection and adsorption/desorption of one to several toxins. Model calculations for the removal of MC-LR, under a variety of situations, fitted well with all the experimentally measured values and also estimated the co-removal of several MC congeners. In agreement with model predictions, results demonstrated that in the presence of MC-WR, the emerging concentrations of MC-RR congeners eventually exceed their solution values. In conclusion, granulated nanocomposites of ODTMA–bentonite can be applied for the removal of microcystins from drinking water
    corecore