39 research outputs found

    A fast EM algorithm for Gaussian model-based source separation

    Get PDF
    International audienceWe consider the FASST framework for audio source separation, which models the sources by full-rank spatial covariance matrices and multilevel nonnegative matrix factorization (NMF) spectra. The computational cost of the expectation-maximization (EM) algorithm in [1] greatly increases with the number of channels. We present alternative EM updates using discrete hidden variables which exhibit a smaller cost. We evaluate the results on mixtures of speech and real-world environmental noise taken from our DEMAND database. The proposed algorithm is several orders of magnitude faster and it provides better separation quality for two-channel mixtures in low input signal-to-noise ratio (iSNR) conditions

    Loop quantization of spherically symmetric midi-superspaces

    Get PDF
    We quantize the exterior of spherically symmetric vacuum space-times using a midi-superspace reduction within the Ashtekar new variables. Through a partial gauge fixing we eliminate the diffeomorphism constraint and are left with a Hamiltonian constraint that is first class. We complete the quantization in the loop representation. We also use the model to discuss the issues that will arise in more general contexts in the ``uniform discretization'' approach to the dynamics.Comment: 18 pages, RevTex, no figures, some typos corrected, published version, for some reason a series of figures were incorrectly added to the previous versio

    Spatial properties of the DEMAND noise recordings

    Get PDF
    National audience"DEMAND" (Diverse Environments Multichannel Acoustic Noise Database) is a set of recordings of environmental noises in both indoor and outdoor settings. The recordings were performed with a 16-channel planar array of microphones. The purpose of the recording is to provide researchers with a large set of freely available noise recordings (licensed under a Creative Commons licence) for use in developing algorithms such as beamforming, noise reduction, and source separation, although anyone may use the data for any purpose they see fit. A more detailed description of the DEMAND recordings can be found in [1]. In this article, we examine some of the spatial properties of the DEMAND recordings, in particular the cross-channel correlations. Notably, the quality of the reverberation characteristics is compared to the theoretical ideal. This property is used as a post-recording calibration of the microphone positions, compared to the design speci cations of the array

    On the geometry of quantum constrained systems

    Full text link
    The use of geometric methods has proved useful in the hamiltonian description of classical constrained systems. In this note we provide the first steps toward the description of the geometry of quantum constrained systems. We make use of the geometric formulation of quantum theory in which unitary transformations (including time evolution) can be seen, just as in the classical case, as finite canonical transformations on the quantum state space. We compare from this perspective the classical and quantum formalisms and argue that there is an important difference between them, that suggests that the condition on observables to become physical is through the double commutator with the square of the constraint operator. This provides a bridge between the standard Dirac procedure --through its geometric implementation-- and the Master Constraint program.Comment: 14 pages, no figures. Discussion expanded. Version published in CQ

    Bosonic Colored Group Field Theory

    Full text link
    Bosonic colored group field theory is considered. Focusing first on dimension four, namely the colored Ooguri group field model, the main properties of Feynman graphs are studied. This leads to a theorem on optimal perturbative bounds of Feynman amplitudes in the "ultraspin" (large spin) limit. The results are generalized in any dimension. Finally integrating out two colors we write a new representation which could be useful for the constructive analysis of this type of models

    Renormalization of Tensorial Group Field Theories: Abelian U(1) Models in Four Dimensions

    Full text link
    We tackle the issue of renormalizability for Tensorial Group Field Theories (TGFT) including gauge invariance conditions, with the rigorous tool of multi-scale analysis, to prepare the ground for applications to quantum gravity models. In the process, we define the appropriate generalization of some key QFT notions, including: connectedness, locality and contraction of (high) subgraphs. We also define a new notion of Wick ordering, corresponding to the subtraction of (maximal) melonic tadpoles. We then consider the simplest examples of dynamical 4-dimensional TGFT with gauge invariance conditions for the Abelian U(1) case. We prove that they are super-renormalizable for any polynomial interaction.Comment: 33 pages, 8 figures, 1 appendix. v2: minor corrections and improvements. v3: minor modifications to match published versio

    Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment

    Get PDF
    Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don't respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/ÎČ2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development

    Triangleland. II. Quantum Mechanics of Pure Shape

    Full text link
    Relational particle models are of value in the absolute versus relative motion debate. They are also analogous to the dynamical formulation of general relativity, and as such are useful for investigating conceptual strategies proposed for resolving the problem of time in quantum general relativity. Moreover, to date there are few explicit examples of these at the quantum level. In this paper I exploit recent geometrical and classical dynamics work to provide such a study based on reduced quantization in the case of pure shape (no scale) in 2-d for 3 particles (triangleland) with multiple harmonic oscillator type potentials. I explore solutions for these making use of exact, asymptotic, perturbative and numerical methods. An analogy to the mathematics of the linear rigid rotor in a background electric field is useful throughout. I argue that further relational models are accessible by the methods used in this paper, and for specific uses of the models covered by this paper in the investigation of the problem of time (and other conceptual and technical issues) in quantum general relativity.Comment: Journal Reference added, minor updates to References and Figure

    A FAST EM ALGORITHM FOR GAUSSIAN MODEL-BASED SOURCE SEPARATION

    Get PDF
    We consider the FASST framework for audio source separation, which models the sources by full-rank spatial covariance matrices and multilevel nonnegative matrix factorization (NMF) spectra. The computational cost of the expectationmaximization (EM) algorithm in [1] greatly increases with the number of channels. We present alternative EM updates using discrete hidden variables which exhibit a smaller cost. We evaluate the results on mixtures of speech and real-world environmental noise taken from our DEMAND database. The proposed algorithm is several orders of magnitude faster and it provides better separation quality for two-channel mixtures in low input signal-to-noise ratio (iSNR) conditions. Index Terms — Audio source separation, FASST, EM algorithm, binary masking, DEMAND
    corecore