287 research outputs found

    Final Report Spacially-Resolved Diagnostics and Modeling of Micro-Discharges

    Get PDF
    Optical emission spectroscopy measurements were performed with added trace probe gases in an atmospheric pressure direct current (DC) helium microplasma. Spatially resolved measurements (resolution {approx} 6 {micro}m) were taken across a 200 {micro}m slot-type discharge. Stark splitting of the hydrogen Balmer-line was used to investigate the electric field distribution in the cathode sheath region. Electron densities were evaluated from the analysis of the spectral line broadenings of H-{beta} emission. The electron density in the bulk plasma was in the range 3-8 x 1013 cm-3. The electric field peaked at the cathode ({approx}60 kV/cm) and decayed to small values over a distance of {approx} 50 {micro}m (sheath edge) from the cathode. These experimental data were in good agreement with a self-consistent one-dimensional model of the discharge. The dependence of gas temperature on gas flow through the slot-type, atmospheric pressure microplasma in helium or argon was investigated by a combination of experiments and modeling. Spatially-resolved gas temperature profiles across the gap between the two electrodes were obtained from rotational analysis of N{sub 2} (C{sup 3}II{sub u} {yields} B{sup 3} II{sub g}) emission spectra, with small amounts of N{sub 2} added as actinometer gas. Under the same input power of 20 kW/cm{sup 3}, the peak gas temperature in helium ({approx}650 K) was significantly lower than that in argon (over 1200 K). This reflects the much higher thermal conductivity of helium gas. The gas temperature decreased with increasing gas flow rate, more so in argon compared to helium. This was consistent with the fact that conductive heat losses dominate in helium microplasmas, while convective heat losses play a major role in argon microplasmas. A plasma-gas flow simulation of the microdischarge, including a chemistry set, a compressible Navier-Stokes (and mass continuity) equation, and a convective heat transport equation, was also performed. Experimental measurements were in good agreement with simulation predictions. Finally, laser scattering experiments were performed at pressures of 100s of Torr in argon or nitrogen. Laser Thomson Scattering (LTS) and Rotational Raman Scattering were employed in a novel, backscattering, confocal configuration. LTS allows direct and simultaneous measurement of both electron density (ne) and electron temperature (Te). For 50 mA current and over the pressure range of 300-700 Torr, LTS yielded Te = 0.9 {+-} 0.3 eV and ne = (6 {+-} 3) 1013 cm-3, in reasonable agreement with the predictions of a mathematical model. Rotational Raman spectroscopy (RRS) was employed for absolute calibration of the LTS signal. RRS was also applied to measure the 3D gas temperature (Tg) in nitrogen DC microdischarges. In addition, diode laser absorption spectroscopy was employed to measure the density of argon metastables (1s5 in Paschen notations) in argon microdischarges. The gas temperature, extracted from the width of the absorption profile, was compared with Tg values obtained by optical emission spectroscopy

    Ammonia plasma passivation of GaAs in downstream microwave and radio-frequency parallel plate plasma reactors

    Get PDF
    The poor electronic properties of the GaAs surface and GaAs–insulator interfaces, generally resulting from large density of surface/interface states, have limited GaAs device technology. Room-temperature ammonia plasma (dry) passivation of GaAs surfaces, which reduces the surface state density, is investigated as an alternative to wet passivation techniques. Plasma passivation is more compatible with clustered-dry processing which provides better control of the processing environment, and thus, improves interface integrity. Passivation was monitored in real-time and in situ using photoluminescence (PL). In addition, the passivated surfaces are inspected using x-ray photoelectron spectroscopy. Passivation with two different plasma excitation methods, downstream microwave (2.45 GHz) and rf (13.56 MHz) parallel plate, are compared, and effects of operating parameters such as pressure, flow rate, and power are examined. In both methods plasma-generated H atoms reduce the surface state density by removing excess As and As2O3 during the first few seconds of the plasma exposure. This step is followed by formation of Ga2O3 which takes place on a longer time scale (5–10 min). While the final passivation result appears to be similar for both methods, surface damage by ion bombardment competes with passivation in the parallel plate method, reduces the PL yield and adversely affects the long term stability of the passivated surface. Although it is common to heat the sample during passivation, we show that NH3 plasma passivation is possible at room temperature without heating. Low-temperature processing is important since passivation can be done at the end of device processing when it is undesirable to expose the device to elevated temperatures. The absence of ion bombardment damage combined with efficient generation of H atoms in the downstream microwave treatment, make this scheme a preferred dry passivation process, which could be easily and inexpensively clustered with existing GaAs processes

    Ion energy distributions in inductively coupled plasmas having a biased boundary electrode

    Full text link
    In many plasma materials processing applications requiring energetic ion bombardment such as plasma etching, control of the time-averaged ion energy distributions (IEDs) to surfaces is becoming increasingly important to discriminate between surface processes having different threshold energies. Inductively coupled plasmas (ICPs) are attractive in this regard since the plasma potential is low and so the energy of ion fluxes can be more finely tuned with externally applied biases. In these situations, pulsed plasmas provide another level of control as the IEDs from different times during the pulse power period can be combined to create the desired time-averaged IED. A recent development in controlling of IEDs in ICPs is the use of a boundary electrode (BE) in which a continuous or pulsed dc bias is applied to shift the plasma potential and modify the IEDs to surfaces without significant changes in the bulk plasma properties. Combinations of pulsing the ICP power and the BE bias provide additional flexibility to craft IEDs. In this paper we discuss results from a computational investigation of IEDs to a grounded substrate in low-pressure (a few to 50¬ñ€ mTorr) ICPs sustained in argon. Results are compared with experimental measurements of plasma properties and IEDs. We demonstrate the ability to customize IEDs consisting of three energy peaks corresponding to the plasma potential during the plasma active glow, plasma afterglow and the plasma potential with the applied boundary voltage.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98615/1/0963-0252_21_6_065009.pd

    Deppining of a Superfluid Vortex Inside a Circular Defect

    Full text link
    In this work we study the process of depinning of a quantum of circulation trapped inside a disk by an applied two dimensional superflow. We use the Gross-Pitaevskii model to describe the neutral superfluid. The collective coordinate dynamics is derived directly from the condensate equation of motion, the nonlinear Schroedinger equation, and it is used to obtain an expression for the critical velocity as a function of the defect radius. This expression is compared with a numerical result obtained from the time independent nonlinear Schroedinger equation. Below the critical velocity, we obtain the dependence of the semiclassical nucleation rate with the flow velocity at infinity. Above the critical velocity, the classical vortex depinning is illustrated with a numerical simulation of the time dependent nonlinear Schroedinger equation.Comment: 8 pages, 5 figures, uses revtex and epsf.st

    Acupuncture for dyspnea in advanced cancer: a randomized, placebo-controlled pilot trial [ISRCTN89462491]

    Get PDF
    BACKGROUND: Dyspnea, or shortness of breath, is a common symptom in patients with advanced cancer. Pharmacologic management is of proven benefit, but it does not help all patients. Preliminary data suggest that acupuncture can relieve dyspnea in a variety of populations, including cancer patients. We conducted a pilot study (ISRCTN89462491) preparatory to a fully powered randomized, placebo-controlled trial to determine whether acupuncture reduces dyspnea in patients with lung or breast cancer. METHODS: The study sample was comprised of forty-seven patients with lung or breast cancer presenting with dyspnea. Patients receiving symptomatic treatments were not excluded as long as no changes in management were planned during the trial. Patients were randomized to receive a single session of true or placebo acupuncture in addition to their existing dyspnea treatments. Semi-permanent acupuncture "studs" were then inserted: patients applied pressure to these studs twice a day to provide ongoing stimulation to acupuncture points. The subjective sensation of dyspnea was assessed with a 0 – 10 numerical rating scale immediately before and after acupuncture treatment and daily for a week thereafter. RESULTS: All but two of 47 randomized patients provided follow-up data. Dyspnea scores were slightly higher for patients receiving true versus placebo acupuncture, for both the period immediately following acupuncture treatment and for the daily one week follow-up (differences between means of 0.34, 95% C.I. -0.33, 1.02 and 0.56, 95% C.I. -0.39, 1.51). The 95% confidence interval excludes the prespecified minimum clinically significant difference of a 20% greater improvement in dyspnea for patients receiving acupuncture. CONCLUSION: The acupuncture technique used in this trial is unlikely to have effects on dyspnea importantly larger than placebo for patients with advanced cancer

    An evaluation of ciprofloxacin pharmacokinetics in critically ill patients undergoing continuous veno-venous haemodiafiltration

    Get PDF
    BACKGROUND: The study aimed to investigate the pharmacokinetics of intravenous ciprofloxacin and the adequacy of 400 mg every 12 hours in critically ill Intensive Care Unit (ICU) patients on continuous veno-venous haemodiafiltration (CVVHDF) with particular reference to the effect of achieved flow rates on drug clearance. METHODS: This was an open prospective study conducted in the intensive care unit and research unit of a university teaching hospital. The study population was seven critically ill patients with sepsis requiring CVVHDF.Blood and ultrafiltrate samples were collected and assayed for ciprofloxacin by High Performance Liquid Chromatography (HPLC) to calculate the model independent pharmacokinetic parameters; total body clearance (TBC), half-life (t1/2) and volume of distribution (Vd). CVVHDF was performed at prescribed dialysate rates of 1 or 2 L/hr and ultrafiltration rate of 2 L/hr. The blood flow rate was 200 ml/min, achieved using a Gambro blood pump and Hospal AN69HF haemofilter. RESULTS: Seventeen profiles were obtained. CVVHDF resulted in a median ciprofloxacin t1/2 of 13.8 (range 5.15-39.4) hr, median TBC of 9.90 (range 3.10-13.2) L/hr, a median Vdss of 125 (range 79.5-554) L, a CVVHDF clearance of 2.47+/-0.29 L/hr and a clearance of creatinine (Clcr) of 2.66+/-0.25 L/hr. Thus CVVHDF, at an average flow rate of ~3.5 L/hr, was responsible for removing 26% of ciprofloxacin cleared. At the dose rate of 400 mg every 12 hr, the median estimated Cpmax/MIC and AUC0-24/MIC ratios were 10.3 and 161 respectively (for a MIC of 0.5 mg/L) and exceed the proposed criteria of >10 for Cpmax/MIC and > 100 for AUC0-24/MIC. There was a suggestion towards increased ciprofloxacin clearance by CVVHDF with increasing effluent flow rate. CONCLUSIONS: Given the growing microbial resistance to ciprofloxacin our results suggest that a dose rate of 400 mg every 12 hr, may be necessary to achieve the desired pharmacokinetic - pharmacodynamic (PK-PD) goals in patients on CVVHDF, however an extended interval may be required if there is concomitant hepatic impairment. A correlation between ciprofloxacin clearance due to CVVHDF and creatinine clearance by the filter was observed (r2 = 0.76), providing a useful clinical surrogate marker for ciprofloxacin clearance within the range studied

    Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke

    Get PDF
    Genetic factors have been implicated in stroke risk but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) in ischemic stroke and its subtypes in 3,548 cases and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 cases and 6,281 controls. We replicated reported associations between variants close to PITX2 and ZFHX3 with cardioembolic stroke, and a 9p21 locus with large vessel stroke. We identified a novel association for a SNP within the histone deacetylase 9(HDAC9) gene on chromosome 7p21.1 which was associated with large vessel stroke including additional replication in a further 735 cases and 28583 controls (rs11984041, combined P = 1.87×10−11, OR=1.42 (95% CI) 1.28-1.57). All four loci exhibit evidence for heterogeneity of effect across the stroke subtypes, with some, and possibly all, affecting risk for only one subtype. This suggests differing genetic architectures for different stroke subtypes

    Discovery of Western European R1b1a2 Y Chromosome Variants in 1000 Genomes Project Data: An Online Community Approach

    Get PDF
    The authors have used an online community approach, and tools that were readily available via the Internet, to discover genealogically and therefore phylogenetically relevant Y-chromosome polymorphisms within core haplogroup R1b1a2-L11/S127 (rs9786076). Presented here is the analysis of 135 unrelated L11 derived samples from the 1000 Genomes Project. We were able to discover new variants and build a much more complex phylogenetic relationship for L11 sub-clades. Many of the variants were further validated using PCR amplification and Sanger sequencing. The identification of these new variants will help further the understanding of population history including patrilineal migrations in Western and Central Europe where R1b1a2 is the most frequent haplogroup. The fine-grained phylogenetic tree we present here will also help to refine historical genetic dating studies. Our findings demonstrate the power of citizen science for analysis of whole genome sequence data

    Antifungal Susceptibility Profiles of 1698 Yeast Reference Strains Revealing Potential Emerging Human Pathogens

    Get PDF
    New molecular identification techniques and the increased number of patients with various immune defects or underlying conditions lead to the emergence and/or the description of novel species of human and animal fungal opportunistic pathogens. Antifungal susceptibility provides important information for ecological, epidemiological and therapeutic issues. The aim of this study was to assess the potential risk of the various species based on their antifungal drug resistance, keeping in mind the methodological limitations. Antifungal susceptibility profiles to the five classes of antifungal drugs (polyens, azoles, echinocandins, allylamines and antimetabolites) were determined for 1698 yeast reference strains belonging to 992 species (634 Ascomycetes and 358 Basidiomycetes). Interestingly, geometric mean minimum inhibitory concentrations (MICs) of all antifungal drugs tested were significantly higher for Basidiomycetes compared to Ascomycetes (p<0.001). Twenty four strains belonging to 23 species of which 19 were Basidiomycetes seem to be intrinsically “resistant” to all drugs. Comparison of the antifungal susceptibility profiles of the 4240 clinical isolates and the 315 reference strains belonging to 53 shared species showed similar results. Even in the absence of demonstrated in vitro/in vivo correlation, knowing the in vitro susceptibility to systemic antifungal agents and the putative intrinsic resistance of yeast species present in the environment is important because they could become opportunistic pathogens
    • 

    corecore