45 research outputs found

    Pre-clinical evaluation of a quadrivalent HCV VLP vaccine in pigs following microneedle delivery

    Get PDF
    The introduction of directly acting antiviral agents (DAAs) has produced significant improvements in the ability to cure chronic hepatitis C infection. However, with over 2% of the world's population infected with HCV, complications arising from the development of cirrhosis of the liver, chronic hepatitis C infection remains the leading indication for liver transplantation. Several modelling studies have indicated that DAAs alone will not be sufficient to eliminate HCV, but if combined with an effective vaccine this regimen would provide a significant advance towards achieving this critical World Health Organisation goal. We have previously generated a genotype 1a, 1b, 2a, 3a HCV virus like particle (VLP) quadrivalent vaccine. The HCV VLPs contain the core and envelope proteins (E1 and E2) of HCV and the vaccine has been shown to produce broad humoral and T cell immune responses following vaccination of mice. In this report we further advanced this work by investigating vaccine responses in a large animal model. We demonstrate that intradermal microneedle vaccination of pigs with our quadrivalent HCV VLP based vaccine produces long-lived multi-genotype specific and neutralizing antibody (NAb) responses together with strong T cell and granzyme B responses and normal Th1 and Th2 cytokine responses. These responses were achieved without the addition of adjuvant. Our study demonstrates that our vaccine is able to produce broad immune responses in a large animal that, next to primates, is the closest animal model to humans. Our results are important as they show that the vaccine can produce robust immune responses in a large animal model before progressing the vaccine to human trials.D. Christiansen, L. Earnest-Silveira, B. Grubor-Bauk, D. K. Wijesundara, I. Boo, P. A. Ramsland, E. Vincan, H. E. Drummer, E. J. Gowans and J. Torres

    c-MET Protects Breast Cancer Cells from Apoptosis Induced by Sodium Butyrate

    Get PDF
    Sodium Butyrate (NaBu) is regarded as a potential reagent for cancer therapy. In this study, a specific breast cancer cell population that is resistant NaBu treatment was identified. These cells possess cancer stem cell characters, such as the capability of sphere formation in vitro and high tumor incident rate (85%) in mouse model. Forty percent of the NaBu resistant cells express the cancer stem cells marker, the CD133, whereas only 10% intact cells present the CD133 antigen. Furthermore, the endogenous expressing c-MET contributes to the survival of cancer stem cell population from the treatment of NaBu. The CD133+ group also presents a higher level of c-MET. A combination treatment of MET siRNA and NaBu efficiently prohibited the breast cancer progression, and the incident rate of the tumor decrease to 18%. This study may help to develop a new and alternative strategy for breast cancer therapy

    Assessment of pre-clinical liver models based on their ability to predict the liver-tropism of AAV vectors

    Get PDF
    The liver is a prime target for in vivo gene therapies using recombinant adeno-associated viral vectors (rAAV). Multiple clinical trials have been undertaken for this target in the past 15 years, however we are still to see market approval of the first liver-targeted AAV-based gene therapy. Inefficient expression of the therapeutic transgene, vector-induced liver toxicity and capsid, and/or transgene-mediated immune responses reported at high vector doses are the main challenges to date. One of the contributing factors to the insufficient clinical outcomes, despite highly encouraging preclinical data, is the lack of robust, biologically- and clinically-predictive preclinical models. To this end, this study reports findings of a functional evaluation of six AAV vectors in twelve preclinical models of the human liver, with the aim to uncover which combination of models is the most relevant for the identification of AAV capsid variant for safe and efficient transgene delivery to primary human hepatocytes. The results, generated by studies in models ranging from immortalized cells, iPSC-derived and primary hepatocytes, and primary human hepatic organoids to in vivo models, increased our understanding of the strengths and weaknesses of each system. This should allow the development of novel gene therapies targeting the human liver

    Down-regulation of frizzled-7 expression decreases survival, invasion and metastatic capabilities of colon cancer cells

    Get PDF
    BackgroundThe canonical Wnt signalling pathway is activated in most sporadic colorectal cancers (CRCs). We previously reported that FZD7 functions as a receptor for the canonical Wnt signalling pathway in colon cancer cells.Methods and resultsIn this study, we examined the function of FZD7 in survival, invasion and metastatic capabilities of colon cancer cells. FZD7_siRNA transfection decreased cell viability of HT-29 and HCT-116 colon cancer cells. Expression of c-Jun, phosphorylation of JNK and c-Jun, and activation of RhoA were suppressed after FZD7_siRNA transfection into HCT-116 cells. In vitro invasion activity and Wnt target gene expression were also reduced in HCT-116 cells transfected with FZD7_siRNA. Liver metastasis of stable FZD7_siRNA HCT-116 cell transfectants in scid mice was decreased to 40-50% compared to controls. The mRNA levels of FZD7 in 135 primary CRC tissues were examined by real-time PCR. FZD7 mRNA levels were significantly higher in stage II, III or IV tumours than in non-tumour tissues (P<0.005), and overall survival was shorter in those patients with higher FZD7 expression (P<0.001).ConclusionThese data suggest that FZD7 may be involved in enhancement of survival, invasion and metastatic capabilities of colon cancer cells through non-canonical Wnt signalling pathways as well as the canonical pathway

    Common dysregulation of Wnt/Frizzled receptor elements in human hepatocellular carcinoma

    Get PDF
    Dysregulation of growth factors and their receptors is central to human hepatocellular carcinoma (HCC). We previously demonstrated that the Frizzled-7 membrane receptor mediating the Wnt signalling can activate the β-catenin pathway and promotes malignancy in human hepatitis B virus-related HCCs. Expression patterns of all the 10 Frizzled receptors, and their extracellular soluble autoparacrine regulators (19 Wnt activators and 4 sFRP inhibitors) were assessed by real-time RT–PCR in 62 human HCC of different etiologies and their matched peritumorous areas. Immunostaining was performed to localise Frizzled on cell types in liver tissues. Regulation of three known Frizzled-dependent pathways (β-catenin, protein kinase C, and C-Jun NH2-terminal kinase) was measured in tissues by western blot. We found that eight Frizzled-potentially activating events were pleiotropically dysregulated in 95% HCC and 68% peritumours as compared to normal livers (upregulations of Frizzled-3/6/7 and Wnt3/4/5a, or downregulation of sFRP1/5), accumulating gradually with severity of fibrosis in peritumours and loss of differentiation status in tumours. The hepatocytes supported the Wnt/Frizzled signalling since specifically overexpressing Frizzled receptors in liver tissues. Dysregulation of the eight Frizzled-potentially activating events was associated with differential activation of the three known Frizzled-dependent pathways. This study provides an extensive analysis of the Wnt/Frizzled receptor elements and reveals that the dysregulation may be one of the most common and earliest events described thus far during hepatocarcinogenesis

    Epithelial to Mesenchymal Transition of a Primary Prostate Cell Line with Switches of Cell Adhesion Modules but without Malignant Transformation

    Get PDF
    Background: Epithelial to mesenchymal transition (EMT) has been connected with cancer progression in vivo and the generation of more aggressive cancer cell lines in vitro. EMT has been induced in prostate cancer cell lines, but has previously not been shown in primary prostate cells. The role of EMT in malignant transformation has not been clarified. Methodology/Principal Findings: In a transformation experiment when selecting for cells with loss of contact inhibition, the immortalized prostate primary epithelial cell line, EP156T, was observed to undergo EMT accompanied by loss of contact inhibition after about 12 weeks in continuous culture. The changed new cells were named EPT1. EMT of EPT1 was characterized by striking morphological changes and increased invasion and migration compared with the original EP156T cells. Gene expression profiling showed extensively decreased epithelial markers and increased mesenchymal markers in EPT1 cells, as well as pronounced switches of gene expression modules involved in cell adhesion and attachment. Transformation assays showed that EPT1 cells were sensitive to serum or growth factor withdrawal. Most importantly, EPT1 cells were not able to grow in an anchorage-independent way in soft agar, which is considered a critical feature of malignant transformation. Conclusions/Significance: This work for the first time established an EMT model from primary prostate cells. The results show that EMT can be activated as a coordinated gene expression program in association with early steps of transformation. The model allows a clearer identification of the molecular mechanisms of EMT and its potential role in malignant transformation

    The Wnt-dependent signaling pathways as target in oncology drug discovery

    Get PDF
    Our current understanding of the Wnt-dependent signaling pathways is mainly based on studies performed in a number of model organisms including, Xenopus, Drosophila melanogaster, Caenorhabditis elegans and mammals. These studies clearly indicate that the Wnt-dependent signaling pathways are conserved through evolution and control many events during embryonic development. Wnt pathways have been shown to regulate cell proliferation, morphology, motility as well as cell fate. The increasing interest of the scientific community, over the last decade, in the Wnt-dependent signaling pathways is supported by the documented importance of these pathways in a broad range of physiological conditions and disease states. For instance, it has been shown that inappropriate regulation and activation of these pathways is associated with several pathological disorders including cancer, retinopathy, tetra-amelia and bone and cartilage disease such as arthritis. In addition, several components of the Wnt-dependent signaling pathways appear to play important roles in diseases such as Alzheimer’s disease, schizophrenia, bipolar disorder and in the emerging field of stem cell research. In this review, we wish to present a focused overview of the function of the Wnt-dependent signaling pathways and their role in oncogenesis and cancer development. We also want to provide information on a selection of potential drug targets within these pathways for oncology drug discovery, and summarize current data on approaches, including the development of small-molecule inhibitors, that have shown relevant effects on the Wnt-dependent signaling pathways

    The Function of Lgr5(+) Cells in the Gastric Antrum Does Not Require Fzd7 or Myc In Vivo

    Get PDF
    The extreme chemical and mechanical forces endured by the gastrointestinal tract drive a constant renewal of the epithelial lining. Stem cells of the intestine and stomach, marked by the cell surface receptor Lgr5, preserve the cellular status-quo of their respective tissues through receipt and integration of multiple cues from the surrounding niche. Wnt signalling is a critical niche component for gastrointestinal stem cells and we have previously shown that the Wnt receptor, Frizzled-7 (Fzd7), is required for gastric homeostasis and the function of Lgr5+ intestinal stem cells. Additionally, we have previously shown a requirement for the Wnt target gene Myc in intestinal homeostasis, regeneration and tumourigenesis. However, it is unknown whether Fzd7 or Myc have conserved functions in gastric Lgr5+ stem cells. Here we show that gastric Lgr5+ stem cells do not require Fzd7 or Myc and are able to maintain epithelial homeostasis, highlighting key differences in the way Wnt regulates homeostasis and Lgr5+ stem cells in the stomach compared to the intestinal epithelium. Furthermore, deletion of Myc throughout the epithelium of the gastric antrum has no deleterious effects suggesting therapeutic targeting of Myc in gastric cancer patients will be well tolerated by the surrounding normal tissue

    HBV-related hepatocarcinogenesis: the role of signalling pathways and innovative ex vivo research models

    Get PDF
    BACKGROUND: Hepatitis B virus (HBV) is the leading cause of liver cancer, but the mechanisms by which HBV causes liver cancer are poorly understood and chemotherapeutic strategies to cure liver cancer are not available. A better understanding of how HBV requisitions cellular components in the liver will identify novel therapeutic targets for HBV associated hepatocellular carcinoma (HCC). MAIN BODY: The development of HCC involves deregulation in several cellular signalling pathways including Wnt/FZD/β-catenin, PI3K/Akt/mTOR, IRS1/IGF, and Ras/Raf/MAPK. HBV is known to dysregulate several hepatocyte pathways and cell cycle regulation resulting in HCC development. A number of these HBV induced changes are also mediated through the Wnt/FZD/β-catenin pathway. The lack of a suitable human liver model for the study of HBV has hampered research into understanding pathogenesis of HBV. Primary human hepatocytes provide one option; however, these cells are prone to losing their hepatic functionality and their ability to support HBV replication. Another approach involves induced-pluripotent stem (iPS) cell-derived hepatocytes. However, iPS technology relies on retroviruses or lentiviruses for effective gene delivery and pose the risk of activating a range of oncogenes. Liver organoids developed from patient-derived liver tissues provide a significant advance in HCC research. Liver organoids retain the characteristics of their original tissue, undergo unlimited expansion, can be differentiated into mature hepatocytes and are susceptible to natural infection with HBV. CONCLUSION: By utilizing new ex vivo techniques like liver organoids it will become possible to develop improved and personalized therapeutic approaches that will improve HCC outcomes and potentially lead to a cure for HBV
    corecore