14 research outputs found

    Consensus Guidelines for Advancing Coral Holobiont Genome and Specimen Voucher Deposition

    Get PDF
    Coral research is being ushered into the genomic era. To fully capitalize on the potential discoveries from this genomic revolution, the rapidly increasing number of high-quality genomes requires effective pairing with rigorous taxonomic characterizations of specimens and the contextualization of their ecological relevance. However, to date there is no formal framework that genomicists, taxonomists, and coral scientists can collectively use to systematically acquire and link these data. Spurred by the recently announced “Coral symbiosis sensitivity to environmental change hub” under the “Aquatic Symbiosis Genomics Project” - a collaboration between the Wellcome Sanger Institute and the Gordon and Betty Moore Foundation to generate gold-standard genome sequences for coral animal hosts and their associated Symbiodiniaceae microalgae (among the sequencing of many other symbiotic aquatic species) - we outline consensus guidelines to reconcile different types of data. The metaorganism nature of the coral holobiont provides a particular challenge in this context and is a key factor to consider for developing a framework to consolidate genomic, taxonomic, and ecological (meta)data. Ideally, genomic data should be accompanied by taxonomic references, i.e., skeletal vouchers as formal morphological references for corals and strain specimens in the case of microalgal and bacterial symbionts (cultured isolates). However, exhaustive taxonomic characterization of all coral holobiont member species is currently not feasible simply because we do not have a comprehensive understanding of all the organisms that constitute the coral holobiont. Nevertheless, guidelines on minimal, recommended, and ideal-case descriptions for the major coral holobiont constituents (coral animal, Symbiodiniaceae microalgae, and prokaryotes) will undoubtedly help in future referencing and will facilitate comparative studies. We hope that the guidelines outlined here, which we will adhere to as part of the Aquatic Symbiosis Genomics Project sub-hub focused on coral symbioses, will be useful to a broader community and their implementation will facilitate cross- and meta-data comparisons and analyses.CV acknowledges funding from the German Research Foundation (DFG), grants 433042944 and 458901010. Open Access publication fees are covered by an institutional agreement of the University of Konstanz

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality

    No full text
    Beneficial microorganisms for corals (BMCs) ameliorate environmental stress, but whether they can prevent mortality and the underlying host response mechanisms remains elusive. Here, we conducted omics analyses on the coral Mussismilia hispida exposed to bleaching conditions in a long-term mesocosm experiment and inoculated with a selected BMC consortium or a saline solution placebo. All corals were affected by heat stress, but the observed "post-heat stress disorder" was mitigated by BMCs, signified by patterns of dimethylsulfoniopropionate degradation, lipid maintenance, and coral host transcriptional reprogramming of cellular restructuration, repair, stress protection, and immune genes, concomitant with a 40% survival rate increase and stable photosynthetic performance by the endosymbiotic algae. This study provides insights into the responses that underlie probiotic host manipulation. We demonstrate that BMCs trigger a dynamic microbiome restructuring process that instigates genetic and metabolic alterations in the coral host that eventually mitigate coral bleaching and mortality.publishe

    Microbial diversity and hydrocarbon depletion in low and high diesel-polluted soil samples from Keller Peninsula, South Shetland Islands

    Get PDF
    The bioremediation of Antarctic soils is a challenge due to the harsh conditions found in this environment. To characterize better the effect of total petroleum hydrocarbon (TPH) concentrations on bacterial, archaeal and microeukaryotic communities in low (LC) and high (HC) hydrocarbon- contaminated soil samples from the Maritime Antarctic clone libraries (small-subunit rRNA genes) were constructed. The results showed that a high concentration of hydrocarbons resulted in a decrease in bacterial and eukaryotic diversity; however, no effect of the TPH concentration was observed for the archaeal community. The HC soil samples demonstrated a high relative abundance of bacterial operational taxonomic units (OTUs) affiliated with unclassified group TM7 and eukaryotic OTUs affiliated with unclassified fungi from Pezizomycotina subphyla. Chemical analyses of the LC and HC soil samples revealed the presence of negligible amounts of nitrogen, thereby justifying the use of biostimulation to remediate these Antarctic soils. Microcosm experiments showed that the application of fertilizers led to an increase of up to 27.8% in the TPH degradation values. The data presented here constitute the first step towards developing the best method to deploy bioremediation in Antarctic soils and provide information to indicate an appropriate action plan for immediate use in the case of new accidents

    Heat waves are a major threat to turbid coral reefs in Brazil

    No full text
    Coral reefs are threatened by climate change on a global scale with thermal stress events and mass coral bleaching being widely reported. The reefs off the east coast of Brazil (and other turbid areas) have, however, historically escaped such thermal stress events, with relatively low levels of background coral mortality (5–10%). This has recently changed. Here we show that, in 2019, degree heating weeks (DHW) of 19.65 coincided with catastrophic declines in coral cover, especially in the major reef building hydrocoral Millepora alcicornis. The decline was due to bleaching associated with exposure to high temperature stress culminating in DHW values exceeding 15 for a period of 50 days. At two independent sites, surveys showed upwards of 83.5 ± 9.0 and 89.1 ± 3.9% mortality, and a third site showed relatively lower (albeit still high) mortality rates of 43.3 ± 12.0%. The mass die-off in 2019 is unprecedented in the South Atlantic reefs and coincides with increased heating events.N/

    Topography and spatial variability of soil physical properties Topografia e variabilidade espacial de propriedades físicas do solo

    Get PDF
    Among the soil formation factors, relief is one of the most used in soil mapping, because of its strong correlation with the spatial variability of soil attributes over a landscape. In this study the relationship between topography and the spatial variability of some soil physical properties was evaluated. The study site, a pasture with 2.84 ha, is located near Seropédica, Rio de Janeiro State, Brazil, where a regular square grid with 20 m spacing was laid out and georreferenced. In each sampling point, altitude was measured and undisturbed soil samples were collected, at 0.0-0.1, 0.1-0.2, and 0.2-0.3 m depths. Organic carbon content, soil texture, bulk density, particle density, and soil water retention at 10 (Field Capacity), 80 (limit of tensiometer reading) and 1500 kPa (Permanent Wilting Point) were determined. Descriptive statistics was used to evaluate central tendency and dispersion parameters of the data. Semivariograms and cross semivariograms were calculated to evaluate the spatial variability of elevation and soil physical attributes, as well as, the relation between elevation and soil physical attributes. Except for silt fraction content (at the three depths), bulk density (at 0.2-0.3 m) and particle density (at 0.0-0.1 m depth), all soil attributes showed a strong spatial dependence. Areas with higher elevation presented higher values of clay content, as well as soil water retention at 10, 80 and 1500 kPa. The correlation between altitude and soil physical attributes decreased as soil depth increased. The cross semivariograms demonstrated the viability in using altitude as an auxiliary variable to improve the interpolation of sand and clay contents at the depth of 0.0-0.3 m, and of water retention at 10, 80 and 1500 kPa at the depth of 0.0-0.2 m.<br>O relevo é um dos fatores de formação do solo mais usados em mapeamento de solos devido sua forte correlação com a variabilidade espacial de atributos do solo na paisagem. O objetivo desse trabalho foi avaliar a relação entre topografia e a variabilidade espacial de algumas propriedades físicas de solos. Em uma pastagem com 2,84 ha instalou-se uma grade regular com espaçamento de 20 m, nas proximidades de Seropédica, RJ, onde cada ponto de amostragem foi georreferenciado. Em cada ponto de amostragem foi medida a altitude e foram coletadas amostras indeformadas nas profundidades de 0,0-0,1; 0,1-0,2 e 0,2-0,3 m. Determinaram-se os teores de carbono, textura, densidade do solo e das partículas e retenção de água a 10, 80 e 1500 kPa. Estatística descritiva foi usada para avaliar a tendência central e a dispersão dos dados. Semivariogramas simples e cruzados foram usados para avaliar a variabilidade espacial da altitude, e dos atributos físicos do solo, bem como a relação entre altitude e atributos físicos do solo. Com exceção da fração silte (nas três profundidades), densidade do solo (0,2-0,3 m) e densidade das partículas (0,0-0,1 m), todos os atributos apresentaram forte dependência espacial. Encontraram-se maiores teores de argila, bem como de retenção de água a 10, 80 e 1500 kPa, nas cotas mais elevadas. A correlação entre altitude e atributos físicos decresceu com o aumento da profundidade. Os semivariogramas cruzados comprovaram a viabilidade do uso da altitude, por cokrigagem, para aperfeiçoar a interpolação de areia e argila na camada de 0.0-0.3 m, e de retenção de água a 10, 80 e 1500 kPa na camada de 0.0-0.2 m
    corecore