1,690 research outputs found

    Measuring new growth of kinnikinnick and brown elfin butterfly abundance at the Ma-le’l & Lanphere Dunes: implications for the management of the seaside hoary elfin butterfly

    Get PDF
    The study assessed changes in inflorescence length of kinnikinnick (Arctostaphylos uva-ursi) new growth and the abundance of brown elfin butterflies (Callophrys augustinas) at the Ma-le’l and Lanphere Dunes. The research took place at the Ma-le’l and Lanphere Dunes in Humboldt County where a surrogate species for the seaside hoary elfin–the brown elfin–is abundant. In the larval stage, the brown elfin feeds on the new growth of kinnikinnick. Our study set out to analyze the food resource availability for brown elfin butterfly larvae, as they are forage on the tender leaves associated with the new growth of kinnikinnick inflorescences. We found a higher abundance of brown elfins was slightly correlated with areas where the average kinnikinnick inflorescence growth rate was higher. Our analysis of several environmental factors in each plot (ant presence, canopy cover, and herbivory) concluded that the variables tested had no significant relationship with the growth of kinnikinnick inflorescences. Future studies should use a longer study interval than the two-week interval used in this study; a longer interval would make it easier to capture changes in the inflorescence length of kinnikinnick. This study has the potential to inform future management strategies that could aid in the recovery of the critically imperiled seaside hoary elfin butterfly, including populations in the Tolowa Dunes State Park in Crescent City, CA

    Team-level programming of drone sensor networks

    Get PDF
    Autonomous drones are a powerful new breed of mobile sensing platform that can greatly extend the capabilities of traditional sensing systems. Unfortunately, it is still non-trivial to coordinate multiple drones to perform a task collaboratively. We present a novel programming model called team-level programming that can express collaborative sensing tasks without exposing the complexity of managing multiple drones, such as concurrent programming, parallel execution, scaling, and failure recovering. We create the Voltron programming system to explore the concept of team-level programming in active sensing applications. Voltron offers programming constructs to create the illusion of a simple sequential execution model while still maximizing opportunities to dynamically re-task the drones as needed. We implement Voltron by targeting a popular aerial drone platform, and evaluate the resulting system using a combination of real deployments, user studies, and emulation. Our results indicate that Voltron enables simpler code and produces marginal overhead in terms of CPU, memory, and network utilization. In addition, it greatly facilitates implementing correct and complete collaborative drone applications, compared to existing drone programming systems

    Current Flow and Pair Creation at Low Altitude in Rotation Powered Pulsars' Force-Free Magnetospheres: Space-Charge Limited Flow

    Get PDF
    (shortened) We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of Rotation Powered Pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We observe novel behavior. a) When the current density is less than the Goldreich-Julian (GJ) value (0<j/j_{GJ}<1), space charge limited acceleration of the current carrying beam is mild, with the full GJ charge density being comprised of the charge density of the beam, co-existing with a cloud of electrically trapped particles with the same sign of charge as the beam. The voltage drops are on the order of mc^2/e, and pair creation is absent. b) When the current density exceeds the GJ value (j/j_{GJ}>1), the system develops high voltage drops, causing emission of gamma rays and intense bursts of pair creation. The bursts exhibit limit cycle behavior, with characteristic time scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). c) In return current regions, where j/j_{GJ}<0, the system develops similar bursts of pair creation. In cases b) and c), the intermittently generated pairs allow the system to simultaneously carry the magnetospherically prescribed currents and adjust the charge density and average electric field to force-free conditions. We also elucidate the conditions for pair creating beam flow to be steady, finding that such steady flows can occupy only a small fraction of the current density parameter space of the force-free magnetospheric model. The generic polar flow dynamics and pair creation is strongly time dependent. The model has an essential difference from almost all previous quantitative studies, in that we sought the accelerating voltage as a function of the applied current.Comment: 35 pages, 29 figures. Accepted for publication in MNRAS. Added new appendix, several minor changes in the tex

    A Superspace Formulation of The BV Action for Higher Derivative Theories

    Full text link
    We first analyze the anti-BRST and double BRST structures of a certain higher derivative theory that has been known to possess BRST symmetry associated with its higher derivative structure. We discuss the invariance of this theory under shift symmetry in the Batalin Vilkovisky (BV) formalism. We show that the action for this theory can be written in a manifestly extended BRST invariant manner in superspace formalism using one Grassmann coordinate. It can also be written in a manifestly extended BRST invariant manner and on-shell manifestly extended anti-BRST invariant manner in superspace formalism using two Grassmann coordinates.Comment: accepted for publication in EPJ

    Reactive control of autonomous drones

    Get PDF
    Aerial drones, ground robots, and aquatic rovers enable mobile applications that no other technology can realize with comparable flexibility and costs. In existing platforms, the low-level control enabling a drone's autonomous movement is currently realized in a time-triggered fashion, which simplifies implementations. In contrast, we conceive a notion of reactive control that supersedes the time-triggered approach by leveraging the characteristics of existing control logic and of the hardware it runs on. Using reactive control, control decisions are taken only upon recognizing the need to, based on observed changes in the navigation sensors. As a result, the rate of execution dynamically adapts to the circumstances. Compared to time-triggered control, this allows us to: i) attain more timely control decisions, ii) improve hardware utilization, iii) lessen the need to overprovision control rates. Based on 260+ hours of real-world experiments using three aerial drones, three different control logic, and three hardware platforms, we demonstrate, for example, up to 41% improvements in control accuracy and up to 22% improvements in flight time

    Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System

    Get PDF
    CRISPR-Cas immune systems adapt to new threats by acquiring new spacers from invading nucleic acids such as phage genomes. However, some CRISPR-Cas loci lack genes necessary for spacer acquisition despite variation in spacer content between microbial strains. It has been suggested that such loci may use acquisition machinery from cooccurring CRISPR-Cas systems within the same strain. Here, following infection by a virulent phage with a double-stranded DNA (dsDNA) genome, we observed spacer acquisition in the native host Flavobacterium columnare that carries an acquisition-deficient CRISPR-Cas subtype VI-B system and a complete subtype II-C system. We show that the VI-B locus acquires spacers from both the bacterial and phage genomes, while the newly acquired II-C spacers mainly target the viral genome. Both loci preferably target the terminal end of the phage genome, with priming-like patterns around a preexisting II-C protospacer. Through gene deletion, we show that the RNA-cleaving VI-B system acquires spacers in trans using acquisition machinery from the DNA-cleaving II-C system. Our observations support the concept of cross talk between CRISPR-Cas systems and raise further questions regarding the plasticity of adaptation modules. IMPORTANCE CRISPR-Cas systems are immune systems that protect bacteria and archaea against their viruses, bacteriophages. Immunity is achieved through the acquisition of short DNA fragments from the viral invader's genome. These fragments, called spacers, are integrated into a memory bank on the bacterial genome called the CRISPR array. The spacers allow for the recognition of the same invader upon subsequent infection. Most CRISPR-Cas systems target DNA, but recently, systems that exclusively target RNA have been discovered. RNA-targeting CRISPR-Cas systems often lack genes necessary for spacer acquisition, and it is thus unknown how new spacers are acquired and if they can be acquired from DNA phages. Here, we show that an RNA-targeting system "borrows" acquisition machinery from another CRISPR-Cas locus in the genome. Most new spacers in this locus are unable to target phage mRNA and are therefore likely redundant. Our results reveal collaboration between distinct CRISPR-Cas types and raise further questions on how other CRISPR-Cas loci may cooperate.Peer reviewe
    corecore