98 research outputs found

    A Comparison of the Pac-X Trans-Pacific Wave Glider Data and Satellite Data (MODIS, Aquarius, TRMM and VIIRS)

    Get PDF
    Tracy A. Villareal, Marine Science Institute and Department of Marine Science, The University of Texas at Austin, Port Aransas, Texas, United States of AmericaCara Wilson, Environmental Research Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Pacific Grove, California, United States of AmericaFour wave-propelled autonomous vehicles (Wave Gliders) instrumented with a variety of oceanographic and meteorological sensors were launched from San Francisco, CA in November 2011 for a trans-Pacific (Pac-X) voyage to test platform endurance. Two arrived in Australia, one in Dec 2012 and one in February 2013, while the two destined for Japan both ran into technical difficulties and did not arrive at their destination. The gliders were all equipped with sensors to measure temperature, salinity, turbidity, oxygen, and both chlorophyll and oil fluorescence. Here we conduct an initial assessment of the data set, noting necessary quality control steps and instrument utility. We conduct a validation of the Pac-X dataset by comparing the glider data to equivalent, or near-equivalent, satellite measurements. Sea surface temperature and salinity compared well to satellite measurements. Chl fluorescence from the gliders was more poorly correlated, with substantial between glider variability. Both turbidity and oil CDOM sensors were compromised to some degree by interfering processes. The well-known diel cycle in chlorophyll fluorescence was observed suggesting that mapping physiological data over large scales is possible. The gliders captured the Pacific Ocean’s major oceanographic features including the increased chlorophyll biomass of the California Current and equatorial upwelling. A comparison of satellite sea surface salinity (Aquarius) and glider-measured salinity revealed thin low salinity lenses in the southwestern Pacific Ocean. One glider survived a direct passage through a tropical cyclone. Two gliders traversed an open ocean phytoplankton bloom; extensive spiking in the chlorophyll fluorescence data is consistent with aggregation and highlights another potential future use for the gliders. On long missions, redundant instrumentation would aid in interpreting unusual data streams, as well as a means to periodically image the sensor heads. Instrument placement is critical to minimize bubble-related problems in the data.The authors have no support or funding to report.Marine ScienceEmail: [email protected]

    Upward nitrate transport by phytoplankton in oceanic waters : balancing nutrient budgets in oligotrophic seas

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PeerJ 2 (2014): e302, doi:10.7717/peerj.302.In oceanic subtropical gyres, primary producers are numerically dominated by small (1–5 ”m diameter) pro- and eukaryotic cells that primarily utilize recycled nutrients produced by rapid grazing turnover in a highly efficient microbial loop. Continuous losses of nitrogen (N) to depth by sinking, either as single cells, aggregates or fecal pellets, are balanced by both nitrate inputs at the base of the euphotic zone and N2-fixation. This input of new N to balance export losses (the biological pump) is a fundamental aspect of N cycling and central to understanding carbon fluxes in the ocean. In the Pacific Ocean, detailed N budgets at the time-series station HOT require upward transport of nitrate from the nutricline (80–100 m) into the surface layer (∌0–40 m) to balance productivity and export needs. However, concentration gradients are negligible and cannot support the fluxes. Physical processes can inject nitrate into the base of the euphotic zone, but the mechanisms for transporting this nitrate into the surface layer across many 10s of m in highly stratified systems are unknown. In these seas, vertical migration by the very largest (102–103 ”m diameter) phytoplankton is common as a survival strategy to obtain N from sub-euphotic zone depths. This vertical migration is driven by buoyancy changes rather than by flagellated movement and can provide upward N transport as nitrate (mM concentrations) in the cells. However, the contribution of vertical migration to nitrate transport has been difficult to quantify over the required basin scales. In this study, we use towed optical systems and isotopic tracers to show that migrating diatom (Rhizosolenia) mats are widespread in the N. Pacific Ocean from 140°W to 175°E and together with other migrating phytoplankton (Ethmodiscus, Halosphaera, Pyrocystis, and solitary Rhizosolenia) can mediate time-averaged transport of N (235 ”mol N m-2 d-1) equivalent to eddy nitrate injections (242 ”mol NO3− m-2 d-1). This upward biotic transport can close N budgets in the upper 250 m of the central Pacific Ocean and together with diazotrophy creates a surface zone where biological nutrient inputs rather than physical processes dominate the new N flux. In addition to these numerically rare large migrators, there is evidence in the literature of ascending behavior in small phytoplankton that could contribute to upward flux as well. Although passive downward movement has dominated models of phytoplankton flux, there is now sufficient evidence to require a rethinking of this paradigm. Quantifying these fluxes is a challenge for the future and requires a reexamination of individual phytoplankton sinking rates as well as methods for capturing and enumerating ascending phytoplankton in the sea.This work has been funded by the National Science Foundation: OCE-0726726, OCE-0094591, OCE-9414372, OCE-9100888 and OCE-9415923 to TAV, and OCE-9423471 to CHP

    A novel immunofluorescence flow cytometry technique detects the expansion of brown tides caused by Aureoumbra lagunensis to the Caribbean Sea

    Get PDF
    Author Posting. © American Society for Microbiology, 2014. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 80 (2014): 4947-4957, doi:10.1128/AEM.00888-14.During the past 3 decades, brown tides caused by the pelagophytes Aureococcus anophagefferens and Aureoumbra lagunensis have caused ecological and economic damage to coastal ecosystems across the globe. While blooms of A. lagunensis had previously been confined to Texas, in 2012, an expansive brown tide occurred on Florida's East Coast, causing widespread disruption within the Indian River and Mosquito Lagoons and generating renewed interest in this organism. A major impediment to detailed investigations of A. lagunensis in an ecosystem setting has been the absence of a rapid and reliable method for cell quantification. The combination of their small size (3 to 5 ÎŒm) and nondescript extracellular features makes identification and enumeration of these cells with conventional methods a challenge. Here we report the development of an immunological-based flow cytometry method that uses a fluorescently labeled antibody developed against A. lagunensis. This method is species specific, sensitive (detection limit of 1.5 × 103 cells ml−1), precise (1% relative standard deviation of replicated samples), and accurate (108% ± 8% recovery of spiked samples) over a wide range of cell concentrations. Furthermore, this method effectively quantifies A. lagunensis in both glutaraldehyde- and formalin-preserved samples, yields a high throughput of samples (∌35 samples h−1), and is cost-effective, making it an ideal tool for managers and scientists. This method successfully documented the recurrence of a brown tide bloom in Florida in 2013. Bloom densities were highest in June (>2.0 × 106 cells ml−1) and spanned >60 km from the Ponce de Leon inlet in the northern Mosquito Lagoon south to Titusville in the Indian River Lagoon. Low levels of A. lagunensis cells were found >250 km south of this region. This method also quickly and accurately identified A. lagunensis as the causative agent of a 2013 brown tide bloom in Guantanamo Bay, Cuba, and thus should prove useful for both quantifying the dynamics of ongoing blooms of A. lagunensis as well as documenting new outbreaks of this harmful alga.This research was funded as part of an NOAA ECOHAB Event Response grant to C.J.G. Support for D.M.A. was provided by the Woods Hole Center for Oceans and Human Health, a National Science Foundation grant (OCE-1314642), and a National Institute of Environmental Health Sciences grant (1-P01-ES021923-01)

    Adaptation to an Intracellular Lifestyle by a Nitrogen-Fixing, Heterocyst-Forming Cyanobacterial Endosymbiont of a Diatom

    Get PDF
    The symbiosis between the diatom Hemiaulus hauckii and the heterocyst-forming cyanobacterium Richelia intracellularis makes an important contribution to new production in the world’s oceans, but its study is limited by short-term survival in the laboratory. In this symbiosis, R. intracellularis fixes atmospheric dinitrogen in the heterocyst and provides H. hauckii with fixed nitrogen. Here, we conducted an electron microscopy study of H. hauckii and found that the filaments of the R. intracellularis symbiont, typically composed of one terminal heterocyst and three or four vegetative cells, are located in the diatom’s cytoplasm not enclosed by a host membrane. A second prokaryotic cell was also detected in the cytoplasm of H. hauckii, but observations were infrequent. The heterocysts of R. intracellularis differ from those of free-living heterocyst-forming cyanobacteria in that the specific components of the heterocyst envelope seem to be located in the periplasmic space instead of outside the outer membrane. This specialized arrangement of the heterocyst envelope and a possible association of the cyanobacterium with oxygen-respiring mitochondria may be important for protection of the nitrogen-fixing enzyme, nitrogenase, from photosynthetically produced oxygen. The cell envelope of the vegetative cells of R. intracellularis contained numerous membrane vesicles that resemble the outer-inner membrane vesicles of Gram-negative bacteria. These vesicles can export cytoplasmic material from the bacterial cell and, therefore, may represent a vehicle for transfer of fixed nitrogen from R. intracellularis to the diatom’s cytoplasm. The specific morphological features of R. intracellularis described here, together with its known streamlined genome, likely represent specific adaptations of this cyanobacterium to an intracellular lifestyle

    ĐąĐ”Ń…ĐœŃ–ĐșĐž графіĐșĐž

    Get PDF
    Đ ĐŸĐ±ĐŸŃ‡Đ° ĐżŃ€ĐŸĐłŃ€Đ°ĐŒĐ° ĐœĐ°ĐČŃ‡Đ°Đ»ŃŒĐœĐŸŃ— ĐŽĐžŃŃ†ĐžĐżĐ»Ń–ĐœĐž Â«ĐąĐ”Ń…ĐœŃ–ĐșĐž графіĐșО» ĐŽĐ»Ń ŃŃ‚ŃƒĐŽĐ”ĐœŃ–ĐČ ŃĐżĐ”Ń†Ń–Đ°Đ»ŃŒĐœĐŸŃŃ‚Ń– 023 Â«ĐžĐ±Ń€Đ°Đ·ĐŸŃ‚ĐČĐŸŃ€Ń‡Đ” ĐŒĐžŃŃ‚Đ”Ń†Ń‚ĐČĐŸ*, ĐŽĐ”ĐșĐŸŃ€Đ°Ń‚ĐžĐČĐœĐ” ĐŒĐžŃŃ‚Đ”Ń†Ń‚ĐČĐŸ, рДстаĐČŃ€Đ°Ń†Ń–ŃÂ». ОсĐČŃ–Ń‚ĐœŃ–Đč ріĐČĐ”ĐœŃŒ ĐżĐ”Ń€ŃˆĐžĐč (баĐșалаĐČрсьĐșĐžĐč) (2 Đșурс, 3 ŃĐ”ĐŒĐ”ŃŃ‚Ń€

    Summer diatom blooms in the eastern North Pacific gyre investigated with a long-endurance autonomous surface vehicle

    Get PDF
    Satellite chlorophyll a (chl a) observations have repeatedly noted summertime phytoplankton blooms in the North Pacific subtropical gyre (NPSG), a region of open ocean that is far removed from any land-derived or Ekman upwelling nutrient sources. These blooms are dominated by N2-fixing diatom-cyanobacteria associations of the diatom genera Rhizosolenia Brightwell and Hemiaulus Ehrenberg. Their nitrogen fixing endosymbiont, Richelia intracellularis J.A. Schmidt, is hypothesized to be critical to the development of blooms in this nitrogen limited region. However, due to the remote location and unpredictable duration of the summer blooms, prolonged in situ observations are rare outside of the Station ALOHA time-series off of Hawai’i. In summer, 2015, a proof-of-concept mission using the autonomous vehicle, Honey Badger (Wave Glider SV2; Liquid Robotics, a Boeing company, Sunnyvale, CA, USA), collected near-surface (<20 m) observations in the NPSG using hydrographic, meteorological, optical, and imaging sensors designed to focus on phytoplankton abundance, distribution, and physiology of this bloom-forming region. Hemiaulus and Rhizosolenia cell abundance was determined using digital holography for the entire June–November mission. Honey Badger was not able to reach the 30°N subtropical front region where most of the satellite chl a blooms have been observed, but near-real time navigational control allowed it to transect two blooms near 25°N. The two taxa did not co-occur in large numbers, rather the blooms were dominated by either Hemiaulus or Rhizosolenia. The August 2–4, 2015 bloom was comprised of 96% Hemiaulus and the second bloom, August 15–17, 2015, was dominated by Rhizosolenia (75%). The holograms also imaged undisturbed, fragile Hemiaulus aggregates throughout the sampled area at ∌10 L−1. Aggregated Hemiaulus represented the entire observed population at times and had a widespread distribution independent of the summer export pulse, a dominant annual event suggested to be mediated by aggregate fluxes. Aggregate occurrence was not consistent with a density dependent formation mechanism and may represent a natural growth form in undisturbed conditions. The photosynthetic potential index (Fv:Fm) increased from ∌0.4 to ∌0.6 during both blooms indicating a robust, active phytoplankton community in the blooms. The diel pattern of Fv:Fm (nocturnal maximum; diurnal minimum) was consistent with macronutrient limitation throughout the mission with no evidence of Fe-limitation despite the presence of nitrogen fixing diatom-diazotroph assemblages. During the 5-month mission, Honey Badger covered ∌5,690 km (3,070 nautical miles), acquired 9,336 holograms, and reliably transmitted data onshore in near real-time. Software issues developed with the active fluorescence sensor that terminated measurements in early September. Although images were still useful at the end of the mission, fouling of the LISST-Holo optics was considerable, and appeared to be the most significant issue facing deployments of this duration

    High concentrations of marine snow and diatom algal mats in the North Pacific Subtropical Gyre : implications for carbon and nitrogen cycles in the oligotrophic ocean

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B. V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 52 (2005): 2315-2332, doi:10.1016/j.dsr.2005.08.004.A Video Plankton Recorder (VPR) and remotely operated vehicle (ROV) were utilized on three cruises in the oligotrophic North Pacific Subtropical Gyre (NPSG) between 1995 and 2002 to quantify the size and abundance of marine snow and Rhizosolenia diatom mats within the upper 305 m of the water column. Quantitative image analysis of video collected by the VPR and an ROV-mounted particle imaging system provides the first transect of marine snow size and abundance across the central North Pacific gyre extending from 920 km NW of Oahu to 555 km off Southern California. Snow abundance in the upper 55 m was surprisingly high for this oligotrophic region, with peak values of 6.0-13.0 x 103 aggregates m-3 at the western and eastern-most stations. At stations located in the middle of the transect (farthest from HI and CA), upper water column snow abundance displayed values of ~0.5-1.0 x 103 aggregates m-3. VPR and ROV imagery also provided in-situ documentation of the presence of nitrogen-transporting, vertically migrating Rhizosolenia mats from the surface to >300 m with mat abundances ranging from 0-10 mats m-3. There was clear evidence that Rhizosolenia mats commonly reach sub-nutricline depths. The mats were noted to be a common feature in the North Pacific gyre, with the lower salinity edge of the California Current appearing to be the easternmost extent of their oceanic distribution. Based on ROV observations at depth, flux by large (>1.5 cm) mats is revised upward 4.5 fold, yielding an average value of 40 ”mol N m-2 d-1, a value equaling previous estimates that included much smaller mats visible only to towed optical systems. Our results suggest that the occurrence across a broad region of the NPSG of particulate organic matter (POM) production events represented by high concentrations of Rhizosolenia mats, associated mesozooplankton, and abundant detrital marine aggregates may represent significant stochastic components in the overall carbon, nitrogen and silica budgets of the oligotrophic subtropical gyre. Likewise, their presence has important implications for the proposed climate-driven, ecosystem reorganization or domain shift occurring in the NPSG.This project was primarily supported by NSF Biological Oceanography Program grant OCE-9423471 to C. Pilskaln, OCE-9415923 and OCE-9414372/OCE-0094591 to T. Villareal, and assisted by OCE-9314533 to D. Caron

    Force variability during isometric wrist flexion in highly skilled and sedentary individuals

    Get PDF
    The association of expertness in specific motor activities with a higher ability to sustain a constant application of force, regardless of muscle length, has been hypothesized. Ten highly skilled (HS group) young tennis and handball athletes and 10 sedentary (S group) individuals performed maximal and submaximal (5, 10, 20, 50, and 75% of the MVC) isometric wrist flexions on an isokinetic dynamometer (Kin-Com, Chattanooga). The wrist joint was fixed at five different angles (230, 210, 180, 150, and 1300). For each position the percentages of the maximal isometric force were calculated and participants were asked to maintain the respective force level for 5 s. Electromyographic (EMG) activation of the Flexor Carpi Ulnaris and Extensor Digitorum muscles was recorded using bipolar surface electrodes. No significant differences were observed in maximal isometric strength between HS and S groups. Participants of HS group showed significantly (P < 0.05) smaller force coefficient of variability (CV) and SD values at all submaximal levels of MVC at all wrist angles. The CV and SD values remained unaltered regardless of wrist angle. No difference in normalized agonist and antagonist EMG activity was observed between the two groups. It is concluded that long-term practice could be associated with decreased isometric force variability independently from muscular length and coactivation of the antagonist muscles

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
    • 

    corecore