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Abstract

Four wave-propelled autonomous vehicles (Wave Gliders) instrumented with a variety of oceanographic and meteorological
sensors were launched from San Francisco, CA in November 2011 for a trans-Pacific (Pac-X) voyage to test platform
endurance. Two arrived in Australia, one in Dec 2012 and one in February 2013, while the two destined for Japan both ran
into technical difficulties and did not arrive at their destination. The gliders were all equipped with sensors to measure
temperature, salinity, turbidity, oxygen, and both chlorophyll and oil fluorescence. Here we conduct an initial assessment of
the data set, noting necessary quality control steps and instrument utility. We conduct a validation of the Pac-X dataset by
comparing the glider data to equivalent, or near-equivalent, satellite measurements. Sea surface temperature and salinity
compared well to satellite measurements. Chl fluorescence from the gliders was more poorly correlated, with substantial
between glider variability. Both turbidity and oil CDOM sensors were compromised to some degree by interfering
processes. The well-known diel cycle in chlorophyll fluorescence was observed suggesting that mapping physiological data
over large scales is possible. The gliders captured the Pacific Ocean’s major oceanographic features including the increased
chlorophyll biomass of the California Current and equatorial upwelling. A comparison of satellite sea surface salinity
(Aquarius) and glider-measured salinity revealed thin low salinity lenses in the southwestern Pacific Ocean. One glider
survived a direct passage through a tropical cyclone. Two gliders traversed an open ocean phytoplankton bloom; extensive
spiking in the chlorophyll fluorescence data is consistent with aggregation and highlights another potential future use for
the gliders. On long missions, redundant instrumentation would aid in interpreting unusual data streams, as well as a means
to periodically image the sensor heads. Instrument placement is critical to minimize bubble-related problems in the data.
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Introduction

Oceanography requires sampling an environment that covers

70% of the Earth’s surface and has traditionally been done from

relatively slow-moving (,10–15 knots) research vessels. The

extended oceanographic expeditions of the late 19th and early

20th century lasting months to years [1] have generally been

replaced by focused, relatively short duration trips of days to weeks

starting in the mid-20th century [2]. While there is often no

substitute for collecting water samples, technological developments

now permit the deployment of ocean observing systems that

generate many types of data collected remotely via electronic or

optical sensors that are either stored or transmitted directly to

shore [3,4]. Satellite remote sensing has transformed oceanogra-

phy by permitting nearly synoptic global measurements of surface

parameters ranging from chlorophyll biomass to salinity, and long-

term moorings now permit time-series information for the water

column at fixed stations.

An additional class of sampling platform that combines mobility

with remote operation is underwater unmanned vehicles (UUVs).

These are mobile, unmanned submersible systems with sensors

that may either be tethered with surface derived power (remotely

operated vehicles) or completely autonomous platforms (autono-

mous underwater vehicles, AUVs) that independently control

speed, direction, and depth based on programming in their

computers.

Autonomous vehicles provide a number of unique capabilities

for sampling the oceanic environment. Their low cost compared to

research vessels allows them to be deployed in tandem and sample

repeatedly over defined areas yielding high resolution 3-D data

sets. For example, a recent analysis found that AUV costs

averaged $998 per day while research vessel costs were . $25,000

per day [5] with UNOLS global class vessels exceeding $30,000

per day [6]. Rapid technological developments now permit

sophisticated instrumentation to be deployed with telemeter

relaying data to shore in near-real time, and when coupled to

GPS navigation systems, quasi-independent operation with
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adaptive sampling. Applications can range from sniffing out

unexploded ordinance [7] to tracking and mapping penguin

feeding grounds [8]. When equipped with high resolution

cameras, long-term monitoring of benthic environments is possible

yielding essential information for ecosystem-based fisheries man-

agement [9]. Autonomous vehicles are now operational in ocean

observing systems with homing and self-docking capability as well

as in supporting research vessel operations [10,11]. They are an

essential part of the oceanographic tool box and are rapidly

evolving in response to the needs of climate change research [11],

particularly in the challenging environment of the Arctic and

Antarctic [12,13]

There are over 50 types of AUVs, based on their speed,

propulsion and sampling capability [14]. As independent vehicles,

power management is a significant concern. Trade-offs between

power requirements and duration have led to several general

classes of AUVs defined at one end of the spectrum by systems that

have significant battery capacity, relatively high speed and the

ability to support energy-intensive sampling equipment and at the

other end by more passive propulsion systems, lower battery

capacity, slower speeds but much greater endurance. Several

propulsion systems that either use changes in ballasting [15], solar

power [16,17], or wave driven propulsion [18] have resulted in

significant advances in endurance. Often termed ‘‘gliders’’, these

ultra-low power requiring platforms are capable of extended

missions. Trans-Atlantic sampling is now possible, demonstrating

the potential for supporting both systematic, autonomous data

collection [5,19] as well as enhanced educational experiences for

linked graduate/undergraduate classes [19]. Extended deploy-

ments (3 months) of SeaGliders [20] were used to document

diatom aggregation after the N. Atlantic spring bloom by changes

in fluorescence spiking over a 0–1000 m depth interval [21].

Gliders were also a component of the cleanup of the Deep Horizon

oil spill in the Gulf of Mexico [5,22] and are used for detection and

monitoring of harmful algae [23]. However, the vast expanses of

the Pacific Ocean have remained a challenge to these systems,

despite the clear need to sample remote features 100s to 1000s of

kilometers offshore [24,25].

Wave Gliders are a distinctly different class of AUVs from many

previous gliders in that they are wave-propelled with continuous

diurnal solar panel support of electrical systems. They are new to

the oceanographic community and little published information on

their long-term deployments (persistent presence) in the ocean is

available. The design of the propulsion system necessarily restricts

them to the surface. Thus, sensors deployed directly on the Wave

Glider are limited to a two-dimensional exploration of the ocean.

However, the mode of propulsion allows tremendous range and

duration at the air-sea interface. In November 2011, Liquid

Robotics, a private company, launched four wave-powered gliders

from San Francisco, CA for a trans-Pacific voyage (the Pac-X

crossing). They transited to Hawaii where they were recovered,

serviced and deployed to travel in pairs to Australia and Japan.

Two arrived in Australia, one in Dec 2012 (the Papa Mau) and one

in February 2013 (the Benjamin), while the two destined for Japan

(the Piccard Maru and the Fontaine Maru) both ran into technical

difficulties and did not arrive at their destination. The privately

funded and collected data set was then made public by the

manufacturer (Liquid Robotics, Inc., Sunnyvale, California).

The dataset acquired during these missions is unique in its

continuity and spatial extent by single autonomous vehicles.

However, this is not a data set intended to be used for calibrating

satellite data or planned to yield new oceanic insights. The effects

on glider sensors and the utility of the resulting data stream during

such prolonged Wave Glider deployments have not been

evaluated. As a first step in exploring the utility of these platforms

for long-term deployments, we have examined the data collected

by Liquid Robotics for systematic problems, compared it to

satellite observations where possible, and identified regions where

novel biological observations were possible. The gliders were

deployed just a few months after the launch of the Aquarius

satellite to measure sea-surface salinity (SSS) [26], thus providing

the opportunity to compare the gliders’ in situ data to this relatively

new satellite data stream. Our evaluation revealed a rich

continuous data stream with evidence of both a phytoplankton

aggregation event and a low salinity layer in the western Pacific, as

well as a number of confounding problems linked to both sensor

calibration and location.

Materials and Methods

Glider Data
The Wave Glider (Fig. 1) is an autonomous sampling system

that uses a series of wings located on a sub body 7 m below the

surface to propel the vehicle forward using the vertical motion

induced by wave motion [18]. The surface payload system (termed

the float) is equipped with solar cells that provide power for the

sampling systems, navigation systems and satellite telemetry links.

For the Pac-X crossing (Table 1), each glider supported 4 sampling

systems. These were a Seabird Conductivity, Temperature, Depth

(CTD) sensor with a dissolved oxygen probe, a Turner Designs C3

fluorometer equipped to measure chlorophyll fluorescence

(460 nm ex/696 nm em; reported in fluorescence units), turbidity

(850 nm ex./850 em.; units = NTU; Nephelometric Turbidity Units),

and colored dissolved organic material (optimized for poly- and

monoaromatic hydrocarbons: termed oil CDOM in this paper as

per the manufacturer; 325 nm ex/410–600 nm em.), a Datawell

MOSE-G directional wave sensor measuring significant wave

height, average wave period, peak wave period, and wave

direction, and an Airmar PB200 weather station that recorded

air temperature, barometric pressure, wind speed, wind gust

speed, and wind direction one meter above the deck of thew. The

Turner Designs C3 systems and the Seabird CTD and oxygen

sensor were all located in the glider payload bay in the float at a

nominal depth of ,0.2 m. The sensor heads pointed down

through the bottom of the float payload bays. The sampling

interval for the CTD sensors was 10 seconds, for the C3 sensors

was 2 minutes and for the weather data was 10 minutes.

Data were stored onboard and relayed via satellite link to Liquid

Robotics. Additional information about the sensors is available

from the Liquid Robotics webpage (http://liquidr.com); a further

recovered was obtained from Liquid Robotics and is listed in Text

S1. The Seabird CTD was calibrated by Seabird Electronics

(Seattle, WA). Salinity drift ranged from +0.00200 to +0.00210

PSU month21; temperature drift ranged from +0.00001 to

0.00042uC per year. Calibration sheets provided by Seabird are

available in Text S1. The Turner C3 sensors were calibrated by

Liquid Robotics (chl fluorescence = 1.0119 mg ml21 Basic Blue

3; crude oil = 250 mg L21 quinine sulfate; turbidity = 3000 NTU

turbidity standard) as per Turner Designs recommendation.

Range, accuracy and detection limits for the Turner C3 and

Seabird gpCTD are presented in Table S1 in Text S1. A summary

of instruments and calibration information can be found in Table

2.

Nominal detection limits are 0.025 mg L21 for chl, 0.2 ppb for

crude oil and 0.05 NTU for turbidity; however, chlorophyll
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fluorescence was not calibrated directly to extracted chlorophyll.

Pre and post calibration runs for the chlorophyll sensors indicated

a factor of 4 difference in the slope suggesting a dilution error at

Liquid Robotics during the standard preparation. Data is

presented only as fluorescence units to reflect the uncertainty in

inter-glider comparisons. Incorrect preparation of the turbidity

standard precluded accurate pre and post-mission calibration at

Liquid Robotics, but a post-mission examination of the sensors by

Turner Design indicated no significant change in performance.

The temperature data standards used by Seabird are the Gallium

Melt Point (GaMP) and Triple Point of Water (TPW) fixed point

cells. The Standard Platinum Resistance Thermometer (SPRT) is

calibrated in the fixed point cells with associated instrumentation,

and then the SBE3 bath temperature references are calibrated

against SPRT. The SBE4 bath conductivity references are

calibrated in seawater and referenced against IAPSO Standard

Seawater using a Guildline AutoSal. We are unaware of any

concurrent water sampling taken to validate the Wave Glider

sensors during deployment.

Sensor selection and instrument placement on the Wave Gliders

was determined by Liquid Robotics. Liquid Robotics planned and

executed the recovery, servicing and photodocumentation of the

gliders. In this study, we examined a subset of data from the CTD

sensors, the C3 sensors and the weather/wave instrumentation.

Data were eliminated for times that the gliders were out of the

water and when the CTD pressure values (indicative of depth)

were negative (i.e. above the surface of the water). Oxygen data

was not examined since the near-surface location of the sensor

insured maximum ventilation with the atmosphere. As a result,

values should be at or near saturation values determined by

temperature. Bubble injection at the surface would also lead to

supersaturation at times, and the resultant manipulations required

to extract useable data were considered too complex for the scope

of this paper.

The PacX data presented is unprocessed and unfiltered, with

two exceptions. To compare the glider data against satellite data,

daily averages were computed for the glider data. An aggregation

metric for the western N. Pacific chl bloom was created using the

mean fluorescence values (65 fluorescence units) for the period

when Piccard Maru left Hawaii until its loss in November. The

numbers of fluorescence spikes exceeding 3 times this value in a

12-hour period were summed to give a count. During this period,

the glider was generally moving between 0.32–0.50 m s21 (0.6–0.9

knots) based on the telemetered navigational information.

Glider data are publically available at http://slab.liquidr.com/

fetch/. During the course of this analysis, a revised data set was

provided. In this revised data set, Liquid Robotics corrected

inconsistencies between different downloadable data files. The

exact nature of the inconsistencies was not clarified although

additional data was in the revised files. Inspection of plots from the

two sources revealed only minor differences. The data used in the

paper as well as all calibration data are available at the National

Oceanographic Data Center ( http://www.nodc.noaa.gov), acces-

sion number 0114435 (http://www.nodc.noaa.gov/cgi-bin/

OAS/prd/accession/download/0114435).

Specific reporting and ethics requirements
During the course of the missions, the gliders entered multiple

exclusive economic zones. Liquid Robotics was responsible for

determining when and where national exclusive economic zones

required permission for sampling (Text S1). The authors had no

role in this process. No protected species were sampled. No

permits were required for these collections. Although Liquid

Robotics provided no details, it is assumed some barnacles and

Figure 1. The Wave Glider long-duration autonomous vehicle used in the Pacific crossings. The chlorophyll, oil CDOM, and turbidity
sensors were located in the payload bays in the surface float. The CTD sensor was located in the glider subsea payload area.
doi:10.1371/journal.pone.0092280.g001
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other fouling organisms were killed by exposure to air when the

gliders were recovered.

Satellite Data
The Wave Glider data were compared to satellite data

measurements of sea surface temperature (SST) from MODIS

(Moderate Resolution Imaging Spectroradiometer), chlorophyll

(chl) from both MODIS/Aqua and VIIRS (Visible Infrared Imager

Radiometer Suite), sea surface salinity (SSS) from the Aquarius

mission, sea surface height (SSH) from AVISO (Archiving,

Validation and Interpretation of Satellite Oceanographic data)

altimetry and Niiler Climatology, and precipitation from the

Tropical Rainfall Measuring Mission (TRMM). The MODIS SST

and chlorophyll data were at 0.025u (,2.5 km) resolution, the

VIIRS data were at 0.04u (,4 km) resolution, the SSS data were

at 1u (,100 km) resolution, AVSIO data were at 0.3u (,30 km)

resolution and the rainfall data were at a 0.25u (,25 km) spatial

resolution. Daily images were used for the match-ups with the

glider data. Satellite match-ups with the glider data were made by

averaging all satellite data within a two-day temporal window and

within a spatial radius of 0.1u for SST and chlorophyll, 1u for

salinity, and 0.5u for rainfall. Monthly composites of Aquarius

SSS, VIIRS chlorophyll, and AVISO SSH were used as overlay

maps of the glider tracks except where otherwise noted. Except for

the TRMM data, satellite data were obtained from http://

coastwatch.pfeg.noaa.gov/erddap/ [28]. The TRMM data were

obtained from http://mirador.gsfc.nasa.gov.

The Aquarius SSS and the VIIRS chl data are both relatively

new data streams; both were launched just a few months before

the Pac-X gliders. The Aquarius/Satélite de Aplicaciones

Cientı́ficas (SAC)-D satellite is a collaborative effort between

NASA and the Argentinian Space Agency Comision Nacional de

Actividades Espaciales (CONAE). It was launched in June 2011

and has been providing global maps of sea surface salinity (SSS)

since September 2011 [26]. VIIRS was launched in October 2011

on the Suomi National Polar-orbiting Partnership (NPP) satellite, a

partnership between NASA and the National Oceanic and

Atmospheric Administration (NOAA). Data from VIIRS is

available from Jan 2012. The Ocean Biology Processing Group

at NASA Goddard Flight Space Center processed both the VIIRS

and Aquarius data. The VIIRS data used was still considered an

evaluation product, version 2013.0. The Aquarius data was

version 2.

Data analysis and presentation used Ocean Data View [29] and

IDL (Interactive Data Language, a software product of ITT Visual

Information Solutions). Information on Tropical Cyclone Freda

was found at the UN Global Disaster Alert and Coordination

System (http://www.gdacs.org/) and the Naval Research Labo-

ratory Monterey websites. NOAA weather information on

Table 1. List of launch and recovery times for each glider in the PacX crossing.

Glider Event Time (UTC) Latitudea Longitude

Papa Maru Initial launch outside SFb Bay 11/18/2011 01:15 34.457 –122.834

Recovery for inspection 12/07/2011 16:45 36.802 –122.136

Launch after inspection 12/07/2011 18:53 36.779 –122.102

Recovery north of Maui 03/14/2012 03:57 20.995 –156.300

Launch from Hawaii 05/08/2012 02:04 19.996 –155.906

Recovery in Australia 11/20/2012 01:58 –24.116 152.805

Benjamin Initial launch outside SF bay 11/18/2011 01:37 37.458 –122.846

Recovery for inspection 12/07/2011 19:28 36.778 –122.106

Launch after inspection 12/08/2011 00:14 36.788 –122.075

Recovery north in Hawaii 03/15/2012 19:15 19.999 –155.902

Launch from Hawaii 05/01/2012 02:06 19.935 –155.981

Recovery in Samoa 10/01/2012 19:01 –13.781 –172.023

Launch in Samoa 10/04/2012 02:41 –13.780 –172.022

Recovery in Australia 02/14/2013 22:23 –23.841 152.331

Piccard Maru Initial launch outside SF bay 11/18/2011 00:54 37.449 –122.819

Recovery for inspection 12/07/2011 20:38 36.769 –122.097

Launch after inspection 12/07/2011 21:58 36.782 –122.143

Recovery north of Maui, Hawaii 03/15/2012 20:50 21.996 –155.915

Launch from Hawaii 05/09/2012 20:08 19.990 –155.892

Fontaine Maru Initial launch outside SF bay 11/18/2011 00:54 37.449 –122.819

Recovery for inspection 12/07/2011 22:04 36.778 –122.146

Launch after inspection 12/07/2011 23:16 36.792 –122.062

Recovery north of Maui 03/09/2012 00:40 19.980 –155.871

Launch from Hawaii 04/22/2012 20:49 19.857 –155.947

Rescue in north Pacific 11/15/2012 00:27 21.060 171.352

aLatitude and Longitude are reported as positive for north and east, negative for west and south.
bSan Francisco Bay, California.
doi:10.1371/journal.pone.0092280.t001
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Tropical Cyclone Freda was found through http://www.

webcitation.org/6DK6x2euY.

Results and Discussion

All four gliders were launched in San Francisco Bay on Nov. 18,

2011 to begin the trans-Pacific mission (Fig. 2). After an initial test

period, they were recovered and inspected in Monterey Bay on

Dec. 7, 2011. The gliders then travelled across the N. Pacific to

Hawaii, reaching that destination within a few days of Mar. 15,

2012 (Table 1). The gliders were inspected and serviced, and

returned to the sea and recovered over several weeks in the vicinity

of Hawaii, with the gliders departing for their next destination as

follows: Papa Mau (Australia; May 8, 2012), Benjamin (Australia;

May 1, 2012), Fontaine Maru (Japan; April 22, 2012), and Piccard

Maru (Japan; May 9, 2012). The Papa Mau was recovered in

Australia on Nov. 20, 2012. The Benjamin was recovered and re-

launched in Samoa (Oct. 1–4, 2012) and reached Australia on

Feb. 14, 2013. The Fontaine Maru was recovered in the open Pacific

by the R.V. Kilo Moana (University of Hawaii) on Nov. 25, 2012.

Contact was lost with the Piccard Maru on Nov. 17, 2012, almost

exactly one year after launch. Since that time, periodic contact

with the Piccard Maru has occurred, but for only 1–2 days

approximately at monthly intervals. The glider is disabled and is

drifting eastward across the Pacific Ocean (W. Vass, Liquid

Robotics). No useful data has been reported to us.

Initial plotting of the data versus time revealed several

characteristics of the data sets that were present to some extent

in all 4 gliders. During our analysis, selected subsets of the data

were deleted due to unresolved quality issues with the data (Table

2). Three of the 4 gliders exhibited serious deviations for some

period of time from reasonable environment values with one or

more of the C3 sensors during the transit. These deletions and the

reasons for them are discussed under the individual sensors below.

All four gliders were recovered at least once in Hawaii, inspected

and returned to the ocean. Photodocumentation of the sensor

heads provided by Liquid Robotics revealed various degrees of

fouling by gooseneck barnacles on the C3 and CTD sensor head

(Fig. S1–S3). In some cases, the barnacles appeared to be within

the sensor field; however, there was no clear relationship seen in

the data. The most problematic drift (the final months of the Papa

Mau C3 chl fluorometer data) could not be resolved since the sea

conditions during recovery prevented photodocumentation of the

sensors (Luke Beatman, Liquid Robotics, personal communica-

tion).

Glider and satellite comparisons
On missions of this duration, assessing instrument integrity and

data validation are critical to determine the utility of the collected

data. The complete time-series of data from the Papa Mau and the

Benjamin are shown in Fig. 3. The data is unfiltered and

unsmoothed. The complete data for the Piccard Maru and Fontaine

Table 2. Summary of glider sensors calibration and quality control decisions.

Glider Measurement Calibration1 Compared Suspect data

Pre- Post- with satellite2

Papa Maru Temperature Seabird Seabird3 Y, r2 = 0.99

Salinity Seabird Seabird3 Y, r2 = 0.79

Chl Flu LR LR Y, r2 = 0.931 9/2012 onward

Oil CDOM LR LR N All daytime

Turbidity LR LR N 9/2012 onward, possible bubble
artifacts

Benjamin Temperature Seabird Seabird Y, r2 = 0.99

Salinity Seabird Seabird Y, r2 = .77

Chl Flu Liquid Robotics Liquid Robotics Y, r2 = 0.901 Nov-Dec 2011

Oil CDOM LR LR N All daytime. Aug 2012, Feb 2013

Turbidity LR LR N Nov-Dec 2011, Dec 2013, possible
bubble artifacts

Piccard Maru Temperature Seabird lost Y, r2 = 0.997

Salinity Seabird lost Y, r2 = 0.813

Chl Flu LR lost Y, r2 = 0.1721 Nov-Dec 2012, 7/2012 onward

Oil CDOM LR lost N All daytime

Turbidity LR lost N possible bubble artifacts

Fontaine Maru Temperature Seabird Seabird3 Y, r2 = 0.99

Salinity Seabird Seabird3 Y, r2 = 0.86

Chl Flu LR LR Y, r2 = 0.031 7/2012 onward

Oil CDOM LR LR N All daytime

Turbidity LR LR N Possible bubble artifacts

LR = Liquid Robotics, Seabird = Seabird Electronics, Y = yes, N = no.
1Calibration data in Text S1.
2Compared with VIIRS chlorophyll.
3calibration drift reports in Supplemental Information.
doi:10.1371/journal.pone.0092280.t002
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Maru are presented in supplemental materials (Fig. S4, S5). All

gliders have gaps in the data at various points of the mission. The

data gap from mid-March-May 2012 occurred during recovery in

Hawaii (Table 1). Significant gaps also exist in the N. Pacific

crossing prior to this due to weather limiting the solar cell

charging. As a first pass for data quality, satellite values of sea

surface temperature (SST), sea surface salinity (SSS) and

chlorophyll (chl) measured along the track were overlain on the

respective glider data (Fig. 3a, b, g, h). Data from all four gliders

aligned well for temperature and showed no evidence of systematic

differences. The satellite and glider values for temperature and

salinity are well-correlated, with r values of 1.0 and 0.81

respectively (Fig. 4). The lower salinity correlation reflects a

sampling distinction between the satellite and glider. The Aquarius

microwave sensor sample sonly the top 1 cm of the ocean [30]

whereas the glider CTD system is 0.2 m below the surface. In

most oceanic circumstances, this difference is inconsequential.

However, as we note below, in regions of heavy rainfall (the

intertropical convergence zone; ITCZ and the South Pacific

Convergence Zone; SPCZ) the historical data indicates salinity

gradients can exist over this depth range [31]. For example, the

two gliders which crossed these regions, the Papa Mau and the

Benjamin, have lower salinity correlation values (r = 0.79 and 0.77)

than the two gliders (the Piccard Maru (r = 0.81) and the Fontaine

Maru (r = 0.94)) which did not. Thus, the lower salinity correlation

can be attributed to both the systematic differences in the satellite

versus glider sampling as well as the inherently lower accuracy (6

0.2 PSU, [26]) of the Aquarius system versus the Seabird CTD.

The Turner C3 data for chl fluorescence, oil CDOM and

turbidity is more challenging to interpret. In the initial inspection

of the data, it was apparent that the Papa Mau chl fluorescence

data after Oct. 2012 contained a serious artifact (Fig. 3c; note the

scale differences between Fig. 3i) when compared to the Benjamin

data from approximately the same region. The Papa Mau

fluorescence values increased by two orders of magnitude, from

,300 fluorescence units to . 20,000 in October 2012, declined to

Figure 2. Maps of gliders tracks overlaid on satellite salinity and chlorophyll. The glider tracks are shown overlaid on (a) Aquarius SSS for
August 2012 and (b) VIIRS chlorophyll for August 2012. The first day of each month is shown as a black triangle. The glider tracks are labeled in (a) and
the tracks of Benjamin and Piccard Maru are shown in white, and those of Papa Mau and Fontaine Maru are shown in dark gray. Where the tracks
overlap, only the grey tracks can be seen.
doi:10.1371/journal.pone.0092280.g002
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3000–4000, and then increased again to . 50,000 just before

recovery (Fig. 3c). Satellite ocean color chl revealed no evidence of

a chlorophyll increase of that magnitude, nor are these values

consistent with comparisons to the richer waters of the California

Current. A nearly coincident drift in the oil CDOM data occurred

as well with values 3–4 times that noted in the California Current.

The direction of the drift is opposite (the oil CDOM maximum

occurred well before the chl fluorescence maximum and was

declining), so a single source seems unlikely. Since there was no

photodocumention of the sensor head upon recovery, this data is

considered problematic and was excluded from analysis. Similar

deviations are seen in the Benjamin data from the turbidity sensor in

August 2012 and late Jan. 2013. During these periods, there was

great variability (10,000s of NTU) in the turbidity signal and

values rarely dropped to the background of 40–50 NTU. A similar

drift after Hawaii was evident in the Fontaine Maru data (Fig. S5)

shortly before loss of the glider. We interpret these periods to be

intervals when some object was in the sensor window, possibly the

fouling organisms seen in the photodocumentation (Fig. S1–S3).

Data in these intervals were discarded from further analysis. A

feature in the Benjamin oil CDOM data from ,10–15 Dec. was

difficult to interpret. It was within a reasonable range for the data

(,700 AU) and background values of 20–27 were observed

throughout the spiking to higher values. Caution was required in

evaluating these features. Intense spiking between background

values occurred in all of the various gliders’ C3 data at some point.

These patterns could only be resolved by expanding the scale to

look at daily data. An additional curiosity in the data was the

apparent truncation of all three fluorescence channels at a nearly

constant value sporadically, thus creating the effect of a line

through the data. After discussions with the vendor (Turner

Designs), this was determined to be the consequence of the

autogain feature of the C3 having inadequate time to reset the

gain to keep the value on scale. Multiple flashes of the excitation

signal are required to properly set the gain, and values collected

before this are registered as the maximum on-scale value

permitted by the range. Thus, off scale data appear as a line

through the data equal to the maximum permissible value at a

gain setting. This was not considered a serious problem, although

the absolute magnitudes of these particular spikes were invalid.

This problem is treated in vertical profiles of oceanographic data

by bin averaging the data into 1-meter increments (, 1 minute of

real time) from its multiple samples per second resolution. The

presence of a pronounced diel cycle in chl fluorescence made this

somewhat problematic, and the data was left unfiltered to preserve

its overall sense.

After removal of problematic data, regressions on the chloro-

phyll fluorescence data were made against two satellite chl

products: MODIS and VIIRS. MODIS is at the end of its

operational life; VIIRS was launched recently with data available

from Jan 2012 on. These regressions suffer from a problem

inherent in the low dynamic range of chlorophyll along this

transect (see Figure 2a). The highest chlorophyll values occurred in

the coastal California Current, a region of significant horizontal

variability due to the complex fronts that occur in the upwelling

zone. This creates a challenging comparison between daily

averages of glider chl fluorescence at meter scales to the

intermittent satellite measurements at kilometer scales. Because

Figure 3. Times-series of CTD and C3 data for Papa Mau and Benjamin. Time-series for the complete mission of (a & g) temperature, (b & h)
salinity, (c & i) fluorescence, (d & j) Oil CDOM, (e & k) turbidity and (f & l) latitude for the Papa Mau and Benjamin gliders. Synoptic temperature values
from the MODIS satellite are overlaid on a & g in red. Synoptic salinity values from the Aquarius satellite are overlaid on b & h in red. Synoptic
chlorophyll values from the MODIS satellite are overlaid on c & i in red, which are on a different scale than the glider fluorescence data. Note that the
scales for (c & i) chlorophyll fluorescence (d & j) Oil CDOM and (e & k) Turbidity are different for the two gliders.
doi:10.1371/journal.pone.0092280.g003
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the VIIRS dataset starts in Jan 2012, after the gliders were out of

the California Current, the VIIRS regressions do not have data

from this highly variable region, leading to a better correlation

with VIIRS than with MODIS. Only two gliders crossed the other

area of significant chlorophyll, the equatorial Pacific. Papa Mau

and Benjamin, the gliders that traversed the equatorial bloom area,

had a good correlation with VIIRS chl (r = 0.93 and 0.90). All

other correlations were poor, with values , 0.5. Inspection of the

combined data plots shows that there was a 2–10 fold range in chl

fluorescence associated with any particular MODIS or VIIRS

chlorophyll value. Individual gliders had different fluorescence

values for the chlorophyll minimum seen in the open Pacific.

Turbidity data
Our initial concept for this data set was to use spiking in the chl

fluorescence and turbidity data as a proxy for large particulate

aggregates [21,32,33]. The turbidity data contains a significant

amount of spiking suggestive of large particles; however, this

particular sensor responses to bubbles as well (pers. comm Turner

Designs). When daily averaged turbidity was regressed against

daily wind speed, the correlation was poor, suggesting no impact

(data not shown). However, examination of the data to compare

zero wind events (dead flat calm) to hurricane force winds

(Tropical Cyclone Freda) revealed that variability in the turbidity

disappeared during calm conditions (Fig. 5a, b), and reached a

maximum during the tropical cyclone (Fig. 5c, d). In T.C. Freda,

the baseline completely disappeared into the spiking (Fig. 5c)

indicating a significant change in the base state. While only one

tropical storm was encountered, the pattern during calm

conditions was repeated several times. In each case, the turbidity

variability decreased to almost monotonic values for the extent of

the calm condition. Minimum C3 turbidity values probably

represents an accurate measure. However, any deviation from this

cannot be distinguished from bubbles. By its design, the Wave

Glider is propelled at the surface like a surfboard and bubbles of all

sizes will roll along the bottom of the float. Microbubbles are of

particular concern since they will not rapidly ascend and are likely

the source of much of the noise. No further analysis of the turbidity

data was attempted.

Diel signals
A clear diel signal (Fig. 6) was present in the C3 chl fluorescence

and oil CDOM data for almost the entire sampling period and was

noted in data from California to Australia. During the significant

fluorescence excursions noted earlier, this physiological cycle of

the phytoplankton completely disappeared. The chl pattern was a

diurnal minimum and nocturnal maximum and was seen even in

the highly variable chlorophyll distribution off California. The

entry into the equatorial Pacific was evident as a rapid increase in

chlorophyll fluorescence on 20 June 2012 late in the scotoperiod

(Fig. 6c,d). In the low biomass waters of the North and South

Pacific Ocean, the diel fluorescence range was ,2 fold (fig. 6a, 6e).

Figure 4. Correlations between glider and satellite data. Correlations between (a) daily averaged glider temperature and MODIS SST, (b) daily
averaged glider salinity and Aquarius SSS, (c) daily averaged glider fluorescence and MODIS chlorophyll, and (d) daily averaged glider temperature
and VIIRS chlorophyll. Points are color-coded by glider; Papa Mau is red, Benjamin is blue, Piccard Maru is green and Fontaine Maru is purple. The
correlation for all glidersis shown, as well as the correlations for each glider individually.
doi:10.1371/journal.pone.0092280.g004
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The equatorial Pacific diel chl pattern was more extreme with 5–6

fold variation between the nocturnal maximum and diurnal

minimum (Fig. 6c). In this latter zone of elevated biomass, the

nocturnal chl fluorescence maximum peaked and declined well

before sunrise, with the fluorescence decline beginning about 4

hours prior to sunrise (Fig. 6c,d, Fig S7). In contrast, the more

oligotrophic waters north and south of the regions reached a

monotonic plateau for most of the night and declined at or after

sunrise (Fig. 6a,e).

A diel cycle was present in the oil CDOM data as well. The

exceptions were the periods when baseline drift was extreme (Fig.

3d) suggestive of either sensor failure or the presence of a large

fouling signal. The diurnal maximum was in the form of increased

positive scatter, or in many cases, a significant positive deflection of

the oil CDOM baseline. We considered photochemical degrada-

tion of CDOM into highly fluorescent compounds; however,

discussions with the vendor (Turner Designs) indicated that the

optional light shield was not installed on these C3 fluorometers.

Rather, a custom copper plate was installed to reduce fouling and

this precluded installation of the light shield (Fig. S1–S3). The light

shield is specifically designed to eliminate solar excitation of the

target molecules. Thus, we concluded that the recurrent diel

signature was associated with solar-induced stimulation of the oil

CDOM component and that it would be impossible to separate

out any photodegradation events. Other than a gradient out of

San Francisco Bay, there were no important gradients in the oil

CDOM data, and this data set was not examined further.

Tropical Cyclone Freda
Storms are one of the hazards of research operations in the open

sea. Shipboard operations have adaptive options to leave the area

or modify operations and weather the storm. Slow-moving

autonomous vehicles have fewer options, or may intend to sample

the storm. Thus, it was of great interest when we noted that the

track for Benjamin intersected with the path of Tropical Cyclone

Freda on 31 Dec. 2012 (Fig S6). Tropical Storm Freda formed

near the Solomon Islands on Dec. 27, 2012 and moved southwest

towards New Caledonia. RSMC Nadi (http://www.met.gov.fj/)

classified it as a category 4 severe tropical cyclone on 30 Dec. 2012

with maximum winds of 115 mph (185 km h-1). After this peak,

the storm weakened due to wind shear as it moved to the southeast

and was downgraded to a category 2 tropical cyclone on 1 January

2013, and later that day, RSMC Nadi downgraded it further to a

tropical depression. Minimum recorded pressure was 940 hpa with

maximum rainfall accumulation of 496 mm (UN Global Disaster

Alert and Coordination System). A tracking map for Benjamin and

TC Freda (Fig. S6) shows the intersection in the Coral Sea (eye

position at 16.4uS 161.1uE 6 30 nautical miles on 31 Dec. 2011

0000Z; Fig. 7). Benjamin’s sensor packages operated during the

storm (Fig 7b-7h) and recorded maximum winds of 56.2 m2s (104

knots; Fig. 7e), significant wave heights of 9.9 m (Fig. 7c), and

notable increases in turbidity (storm-induced bubbles, Fig. 7h) and

decreases in salinity (Fig. 7f) associated with the storms precipi-

tation and/or bubbles (Fig 7a). Benjamin’s onboard meteorological

package recorded a low pressure of 972.5 hPa, well above with the

lowest pressure (940 hPa) reported, but it was ,40 km from the

eyewall. The Seabird CTD pressure sensor also recorded the

decrease in atmospheric pressure, reporting an apparent depth of

approximately –0.4 m. NOAA weather reported maximum winds

on 31 Dec 2012 as 105 knots (54 m s21) with gusts to 130 knots

(66.9 m s21).

Hydrographic data
The gliders sampled the major oceanographic features of the

Pacific Ocean. The California Current and Equatorial Pacific with

their expected biomass changes (Fig. 3a, b, S4, S5) were the

dominant features. The high biomass, low salinity waters of the

California Current are evident in the initial two months of

deployment as low salinity, moderate chlorophyll fluorescence

areas (Fig. 2b, 3). The upwelling zone within it is visible as the high

chlorophyll values along the US west coast (Fig. 2b). All four Wave

Gliders transited along the same path to Hawaii. The California

Current is a broad feature, about 800 km wide [34] and is

evidenced in the gradual increase of salinity as the platforms

entered the N. Pacific gyre (Fig. 2a, 3, S8). The North Pacific

subtropical front is evident in the data as a salinity increase from

approximately 34.8 to 35.2 near 32uN (Fig S8). All 4 gliders were

closely spaced along a single track at this time, and no longitudinal

coverage along the front was available. The north STF extends

across the entire Pacific Ocean, curves southward and the eastern

boundary, where it separates the fresher water of the California

Current from the saltier water of the North Pacific Gyre [35].

Another salinity front (south subtropical front) was evident just

north of Hawaii as the gliders left the high salinity waters of the

gyre (Fig. S8) and entered the wintertime subtropical current [36].

In neither case was a change in the phytoplankton biomass (chl

fluorescence) evident. The other feature of interest is the equatorial

region. Only two of the gliders, the Papa Mau and the Benjamin,

crossed the equator. They transected the equatorial chlorophyll

bloom (Fig. 2b, 8a, c) and then the region of lower salinity along

10uN beneath the ITCZ (Fig. 2a, 8b,c).

Figure 5. Time-series of turbidity data illustrating the effect of
wind speed on readings. (a) Turbidity, (b) Wind speed, Benjamin 10
March 2012 location was 20.016 uN 155.942 uW; (c) turbidity, (d) Wind
speed, Benjamin 31 Dec. 2012 location was 17.947 uS 161.398 uE. The
high wind event was Tropical Cyclone Freda. Note the scale change in
wind and turbidity between Fig 5a, b and Fig. 5c, d.
doi:10.1371/journal.pone.0092280.g005
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Equatorial Pacific
The most variable region that the gliders sampled was the

equatorial Pacific region (Fig. 2a,b), where upwelling generates

higher chlorophyll, and the presence of the ITCZ along 10uN
leads to lower salinities (Fig. 2a). Data along the tracks of the two

gliders that transected this region (the Benjamin and the Papa Mau)

are shown in Fig. 8a-c. The fluorescence data from the gliders,

when scaled to 0–140 fluorescence units matches up well with the

satellite chl data scaled from 0–0.2 mg/m3, which is consistent

with the correlation analysis presented earlier for these two gliders

(a 4). The biological response to the equatorial upwelling is clearly

evident in the increased glider fluorescence found between 10u N

and 5–10 uS (Fig. 8c, Fig. 9). The match-up between the glider and

satellite salinity data is better north of the equator. South of the

equator, the glider salinity is saltier than the satellite salinities (Fig.

8b). However, an important caveat with overlaying track values on

the satellite data is that there can be significant variations in the

temporal match ups between the two datasets. For example, the

satellite images are monthly composite for July 2012, while the

glider data shown was collected between early June through mid

October 2012 (Fig. 8, 9).

The difference between glider and Aquarius salinity data is not

due entirely to the temporal differences between the data as can be

seen in Fig. 8 and 9, where the glider and satellite data are plotted

against latitude. There are several areas of significant discrepancy

between the Aquarius and glider salinities. The Aquarius data is

fresher than the Benjamin data by ,0.5 salinity between 6u–8uN
(Fig. 9b), a zone characterized by lower salinity due to its location

under the ITCZ. However it is interesting to note that the Papa

Mau, which followed the same track but preceded the Benjamin by

two weeks (Fig. 9b) did not show much of a discrepancy, ,0.1

salinity at the most. The Benjamin transected this region during a

period of much heavier rainfall than the Papa Mau (Fig. 9b,e). The

glider’s CTD sensor is located at a depth of 0.2 m on the glider,

and the satellite measurement of salinity is made by a microwave

radiometer (top 1 cm) We interpret this to indicate a surface lower

salinity water lens less than 20 cm thick. Benjamin also sampled

another low salinity lens associated with heavy rainfall between

13–14uS (Fig. 9b). The biggest difference between the Aquarius

and glider salinities occurred when the Papa Mau transected the

SPCZ, between 5–10uS and 175u–180uE. While the bolus of

Aquarius salinities , 35, and . 1 salinity fresher than the Papa

Mau salinities appears anomalous (Fig. 8a, 9e), this is part of the

band of lower SSS that extends down from the western ‘‘fresh

pool’’ created by the heavy rainfall of the SPCZ [37,38]. While

there was no significant rainfall in this area during the Papa Mau’s

transect (Fig. 9b), significant rainfall in this region preceded the

glider (Fig. 10). A simple mixing calculation indicate that 50 mm

of rain, well within the observed precipitation, mixed over the top

2 meters of water with salinity = 35 would decrease the surface

salinity to 34.1, thus it is likely that the low salinity signature could

extend deeper than just the upper 20 cm in other regions. Surface

data (5.5 m) from an Argo float (5902229_124) 140 km northwest

(5.5uS, 178.2uE on Aug 3, 2012) from Papa Mau during the

crossing of this ‘‘fresh pool’’ indicated S = 35.4, consistent with

the glider values (Figure 9e).

The salinity fronts found in this region (Fig. 8c) bounded the

biological zonation of the central equatorial Pacific. Both gliders

encountered a salinity front at 10u N where a sharp increase from

a salinity of 34.25 to 35.1 defined the northern boundary of the

higher salinity, westerly flowing equatorial current system and the

southern influence of the ITCZ. Chl fluorescence increased 3–5

fold and was maintained as the gliders progressed south through

another salinity gradient to 35.5. The Papa Mau, on its more

westerly path (Fig. 8a), left this region and entered the lower

salinity water of the SPCZ (35–35.25 and declining: Fig. 8c) typical

of the western Pacific warm pool with a subsequent decline in

fluorescence. The Benjamin continued south, staying in the higher

salinity water mass, until chl fluorescence declined as it entered the

higher salinity water of the south Pacific gyre (salinity = 35.75).

Benjamin then proceeded southwest towards Australia.

Open ocean chlorophyll bloom
Both the Fontaine Maru and the Piccard Maru entered an area of

the oligotrophic western Pacific in late July 2012 that showed

elevated chlorophyll levels in the satellite data (Fig. 11). These

areas are of particular interest since they frequently co-occur with

blooms of nitrogen-fixing diatom symbioses (Hemiaulus hauckii and

its symbiont Richelia intracellularis) [39,40].). While satellite chloro-

phyll can indicate the presence of phytoplankton biomass, diatom

symbioses can reach bloom levels without an obvious satellite chl

signal [41]. In this latter bloom, the diatom symbioses aggregated

into visible macroscopic flocs [41] that are important contributors

to summer carbon flux into the deep sea [42]. Aggregation is often

transient and difficult to detect; however, optical signals (spikes) in

either transmissometer or fluorometer profiles have been shown to

be useful in detecting aggregates and quantifying their role in

vertical transport [21,32,33,43–45]. In the case of open ocean chl

blooms in the Pacific, spiking in vertical CTD profiles coincided

with diver-observations of large diatom aggregates [46]. There is

also evidence that eddy-eddy interactions in the open sea can focus

large particulates [47], and in the case of photosynthetic particles,

this will appear as fluorescent spikes as well. The fortuitous

sampling by these gliders provided an opportunity to examine if

the surface fluorescence could be used to document these

phytoplankton events via changes in the fluorescence spiking.

The diel range of background chl fluorescence in this region

prior to the bloom ranged from ,10–30 fluorescence units for the

Fontaine Maru and ,10–35 fluorescence units for the Piccard Maru.

On 23 July 2012, the Fontaine Maru began a long-term drift in the

chl a fluorescence data, eventually reaching chl fluorescence values

of 1150 fluorescence units on 11 Aug. 2012 (Fig. S7). This was

equivalent to values in the California Current and well outside the

range of credible surface values for the open Pacific Ocean. More

importantly, the diel pattern in chl fluorescence seen across the

Pacific Ocean was completely lost, suggesting the baseline values

did not represent a signature from phytoplankton. The glider then

went silent for several months, briefly restored contact in mid

November, and was recovered by the R.V. Kilo Moana.

Although the Fontaine Maru’s chl fluorescence conveniently

aligned with features of interest in the satellite data, the

problematic nature of Fontaine Maru data could not support further

analysis. Data from the Piccard Maru also looked questionable when

viewed as part of the total data set (Fig. S6); however, closer

examination of it indicated substantial differences from the Fontaine

Maru’s data. Unlike the Fontaine Maru, the Piccard Maru’s data did

Figure 6. Diel patterns in chlorophyll fluorescence and oil CDOM in the major geographic regions sampled. Time axes are in UTC.
Shaded areas are local nighttime. Vertical lines are local dawn, noon and sunset. Diel patterns in chlorophyll fluorescence (a,c,d) and oil CDOM (b,d,e).
Panels (a, b.) Papa Mau off Hawaii (17.056 u N 157.796 u W) (c, d). Papa Mau in the Equatorial Pacific (9.466 u N 168.13 u W). (e) Benjamin off New
Caledonia (17.565 u S 164.387 u E).
doi:10.1371/journal.pone.0092280.g006
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Figure 7. Tropical Storm Freda. (a) Glider track overlaid on TRMM precipitation estimate for 31 Dec. 2012. (b) Barometric pressure. (c) Significant
wave height. (d) Average wind speed. (e) Maximum wind speed. (f) Salinity. (g) Chlorophyll a fluorescence. (h) Turbidity.
doi:10.1371/journal.pone.0092280.g007

Figure 8. Glider tracks overlaid on satellite chlorophyll and salinity for the equatorial crossings. The glider tracks for Papa Maru and
Benjamin are shown overlaid on (a) VIIRS chlorophyll for July 2012 and (b) Aquarius SSS for July 2012. The glider tracks are color coded by the value
for glider fluorescence and salinity. The first day of each month is shown as a large white diamond, the fifteenth of the month is shown as a smaller
white diamond. Benjamin followed a path along 170uW, while the Papa Mura took a more western route. (c). chl fluorescence (relative units) overlaid
on salinity tracks as a function latitude. Longitude is color-coded for the salinity tracks for reference to panel (b). The Papa Mau salinity track is
labeled, the Benjamin’s salinity track overlays this until ,1uS and is not labeled due to space constraints.
doi:10.1371/journal.pone.0092280.g008

Wave Glider Pac-X Comparison

PLOS ONE | www.plosone.org 13 March 2014 | Volume 9 | Issue 3 | e92280



not show an upward drift of the baseline (Fig 11a). While the

instantaneous values showed considerably variability, the baseline

was steady at ,10–20 fluorescence units (Fig. 11a). The diel

pattern in fluorescence was visible through the area of interest (Fig.

11a inset). We concluded that the fluorescence data reflected

processes occurring in the water and supported analysis. There

was an increase to 50 fluorescence units from 31 July to 1 August

2012 that coincided with passage through a chl filament (Fig. 11a-

c). Beginning on ,28 July 2012, the variability (spikiness) of the

fluorescence data increased dramatically as well (Fig. 11b), and it

was this high density of spiking that gave the appearance of a

general increase in fluorescence in Fig. S6. We applied an

aggregation metric (see Methods) intended to provide quantitative

value of the number of spikes per 24 hour that exceeded the mean

fluorescence values as well as the diel pattern of chlorophyll

fluorescence. The spiking density decreased abruptly on 16 August

(Fig. 11a), but in general was more elevated for the duration of the

mission west of this area relative to east of the bloom (Fig. 11a).

The chl fluorescence was approximately twice background for a

period of 14 Aug. to 23 Sept 2012, then returned to pre-increase

background.

When overlaid on sea surface height data from satellite radar

altimetry (Fig. 11d), the spiking was associated with the region

between an anticyclonic and cyclonic mesoscale eddy, a region

also associated with a salinity increase of 0.3 suggestive of a front

(Fig. 11b). The spiking occurred at the interface of a clockwise flow

around an anticyclonic feature (high relative SSH) and a counter-

clockwise flow around a cyclonic feature (low relative SSH). The

influence of the currents in this interaction zone can be seen in the

significant northern displacement of the glider’s trajectory in this

region as well (Fig. 11c, d) and the southerly displacement as the

glider exited the cyclonic feature at ,175.5 uW.

Evaluation
The PacX missions highlighted a number of positive aspects of

the Wave Glider long duration flights as well as some of the

potential pitfalls. The continuity of data combined with the

programmable navigation allowed considerable replication of

tracks during the California to Hawaii leg. The divergence of the

Benjamin and Papa Mau after the equatorial crossing captured

details of the low salinity lens of the western South Pacific. The

durability during Tropical Cyclone Freda was remarkable (Liquid

Robotics claims 10 hurricanes, typhoons and cyclones transited by

these systems: http://www.liquidr.com/news_events/newsletters/

making-waves_1302.html), and suggests a future role for these

systems in understanding the development of tropical systems such

as the program being developed by the Atlantic Oceanographic

and Meteorological Laboratory (NOAA).

The duration of these missions required considerable data

validation and quality control. The glider temperature and salinity

were well correlated with their respective satellite sensors. Long-

term stability and fouling of these sensors was not a serious

problem. There are several layers of complexity associated with

comparing chlorophyll fluorescence to the ocean color satellite

data. A pronounced diel rhythm in chlorophyll fluorescence is well

documented [48–50] and is linked to biological processes that

regulate electron flow in photosystem II [51,52] in accordance

with physiological state and diel patterns of solar radiation.

Satellite chlorophyll data is based on wavelength specific

absorption by particulates after substantial corrections for atmo-

spheric interference. Thus, they are inherently different measure-

Figure 9. Time-series of Benjamin and Papa Mau data for the Equatorial crossing. Plots of (a) temperature, (b) salinity and (c) fluorescence for
Benjamin and (e) temperature, (f) salinity and (g) fluorescence for Papa Mau against latitude The glider data at full temporal resolution are plotted in
gray, the daily averaged values are in black, and the satellite data are colored. TRMM precipitation data is shown in green on the salinity plots. Both
MODIS (red) and VIIRS (blue) chlorophyll data are shown on the fluorescence plots.
doi:10.1371/journal.pone.0092280.g009
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ments of the same property (chlorophyll a). This is compounded by

the surface location of the C3 sensor (maximum solar effects) when

compared to the satellite chlorophyll measurement over one

optical depth (,30 m for most waters in this study). The

chlorophyll fluorescence will also respond to individual large

particles common in these waters at the surface such as

Trichodesmium, colonial radiolarians and various diatom aggregates.

The resulting spiking is useable data, although the autoscaling

time-dependency reduces the utility of the absolute value. In

general, the patterns observed in the satellite and glider data sets

were in agreement; however, the inter-glider calibration problems,

long-term drift, and fouling suggests caution is required in use of

the fluorescence data.

The crude oil CDOM and turbidity sensors both were

compromised to some degree by overriding signals. Solar induced

fluorescence prevented use of diurnal data in the CDOM sensor,

and bubbles appeared to be a significant (and unquantifiable)

problem for the turbidity sensor. Placement of the turbidity sensor

in the sub body 7 m below the surface would likely have

minimized this problem.

Platform fouling is a nearly unavoidable consequence of the

long-term deployment of these 4 Wave Gliders. The optical

sensors appeared to be more subject to their presumptive effects

than did the sensors for temperature and salinity. The inability to

determine whether a signal was real or an artifact limited the use

of some of the data and suggests that redundant systems are

required for very long term deployments. In addition, a capability

to image the sensor heads on command would significantly reduce

the uncertainty as to the cause of drift and noise.

While the systems do not capture three-dimensional data as

Argos floats or profiling autonomous vehicles such as the Slocum

glider can, the immense duration of the missions and high

resolution surface mapping potential of the Wave Glider is clearly

evident in the detail captured in the equatorial crossing. The

systems are directly analogous to surface vessels’ underway

sampling systems and as size, cost and power requirements of

sensors continue to drop, additional uses will develop. In

particular, the systems appear useful for calibrating satellite data

and targeting the temperature-salinity surface characteristics of

oceanographic fronts and water masses. While these 4 glider

missions were not designed to test specific hypotheses and or to

calibrate satellite data, the data sets have demonstrated the Wave

Gliders ability to sample known features along great distances.

Within the data sets are some indicators of unusual properties that

merit further examination.

The continuous monitoring of biological properties captured the

characteristics of phytoplankton in different oceanographic prov-

inces. The diel fluorescence pattern of phytoplankton has been well

documented [48–50,53,54] and both the Papa Mau and Benjamin

captured the transition from the gyre to the equatorial current

system. The timing of the pre-dawn fluorescence decrease was

notably different in the two water masses. Behernfeld et al [55]

noted a transition from N limitation to Fe limitation at ,5u N linked

to the equatorial/subtropical transition by using advanced active

Figure 10. Daily maps of precipitation near the Papa Mau tracks south of the equator. Precipitation maps for (a) July 25, (b) July 30, (c) Aug
1 and (d) Aug 3 with daily positions shown of the Papa Maru glider. The position synoptic with the precipitation is shown as a large red circle.
doi:10.1371/journal.pone.0092280.g010
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fluorescence systems to monitor the characteristics of normalized

variable fluorescence. This is much more sophisticated than the

Turner C3 measurements, but if power requirements can be

suitably reduced, the Wave Gliders would be able to provide a novel

mapping ability for the ocean that could advance our understanding

of both basin-scale and regional patterns. In particularly, the impact

of sub-mesoscale interactions on phytoplankton growth and biomass

development [47,56,57] would become accessible at daily the time-

scale relevant to these processes.

The event sampled by the Piccard Maru in August 2012 is

consistent with phytoplankton aggregations. Several features are

noteworthy. The event occurred at the interaction of two mesoscale

features, a cyclonic and anticylonic feature similar to that noted well

to the east[47]. In these regions, zones of horizontal turbulent

stirring are created that lead to localized ageostrophic flows and the

resultant production of upwelling and downwelling zones [56,57].

In addition, these eddies inject, on average, 88 mmol N m22 y21

into the Pacific gyre near Hawaii [58] due to nutricline uplift and

may enhance localized blooms of nitrogen-fixing phytoplankton

[59] via the submesoscale vertical transport of nutrients. Guidi et al

[47] directly observed the impact on Trichodesmium communities,

and documented the accumulation and enhanced export of

Trichodesmium colonies in the frontal zone between the eddies and

at the edge of the anticyclone. In their study, they sampled across an

elevated chlorophyll feature at the interface of a cyclone and

anticyclone, analogous to the features noted north and east of the

glider track in Fig. 11c and directly sampled on 1 Aug 2011 at ,180

uE. A slight elevation in the fluorometer fluorescence during the

major aggregation event suggests this was real. The aggregation

event also coincided with a salinity increase and location consistent

with the southern subtropical front [36]. Diatom symbiosis

commonly bloom along the northern subtropical front [24], and

the lack of a satellite signal is more consistent with a Hemiaulus bloom

[41] than Trichodesmium. The data is not conclusive although it does

highlight the role Wave Gliders could play in tracking these blooms

if properly instrumented.

Measurements in this top layer of the ocean are difficult and not

commonly made. Fresh surface salinity lens associated with rainfall

have been observed with thicknesses of several meters [45,60] and

they can extend to as deep as 40 m [31,61,62] These ‘‘rain

puddles’’ are generally characterized as being small scale, with

horizontal scales of ,10 km [45]. This small-scale heterogeneity is

evident in the glider salinity data as the numerous spikes of lower

salinity, particularly during periods of rainfall. However an

interesting result of the Pac-X mission is the observation that

shallow lenses of fresh water may occur over much larger spatial

scales.

Conclusions

The Wave Glider PacX missions documented the long-

deployment capabilities of the systems for examining oceano-

graphic patterns and distributions. The temperature and salinity

sensors were stable; the optical sensors generated data that

requires careful evaluation prior to use. Surface based measure-

ments are highly sensitive to solar radiation and bubbles; sensor

Figure 11. Open ocean chlorophyll bloom sampled by the Piccard Maru. (a) Glider chlorophyll fluorescence from the C3 sensor. Inset:
expanded view showing diel cycle of chlorophyll fluorescence throughout the event and stable baseline. (b) 12 hour spiking sum and salinity field
during the event. Salinity is color-coded by scale on the left. (c) Bubble plot of 12 hr spiking sum overlaid on MODIS chlorophyll distribution (8-day
integration composite centered on 5 Aug. 2012). (d) Bubble plot of 12 hr spiking sum overlaid on sea surface height (30 day composite; 1 Aug 2012)
from satellite altimetry.
doi:10.1371/journal.pone.0092280.g011
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selection, design and location on the gliders are critical to

successful data recovery. Autogain features, while necessary,

complicated specific analyses of the fluorescence data for

aggregation phenomena. Redundant sensors and sensor head

imaging would be useful to support the data analysis and help

interpret patterns in cases of long-term drift. Fouling is a problem

in multiple month deployments although manageable. The

systems have capability to provide surface validation of satellite

measurements, and to track fronts and rapidly developing features

particularly if multiple gliders can be used. The ability to track diel

changes in phytoplankton physiology suggests an expanded role

for them in mapping nutrient limitation in these communities.

They can survive tropical cyclone conditions.

Notable features observed in these missions are indications of

western Pacific low salinity lenses and an apparent phytoplankton

aggregation event. Differences in the Aquarius sea surface salinity

data and glider-based salinity sensor revealed the existence of low

salinity surface pools in the western Pacific. Examination of the chl

fluorescence data suggested a substantial aggregation event

occurred in the frontal zone between two mesoscale eddies in

the western Pacific. It is consistent with either a Trichodesmium

accumulation or diatom aggregates. The sensitivity to diel rhythms

in chlorophyll fluorescence suggests physiological information is

possible to obtain with the appropriate sensors.

Supporting Information

Figure S1 Photodocumentation of Benjamin’s C3 sensor
head upon recovery in Australia.

(PDF)

Figure S2 Photodocumention of Piccard Maru bottom
fouling at the Hawaii recovery.

(PDF)

Figure S3 Photodocumentation of Fontaine Maru. A.

Hawaii recovery. The circular C3 sensor head can be seen at the

left of the glider. B. After recovery in the western Pacific.

(PDF)

Figure S4 Complete mission data plot for Piccard
Maru.
(PDF)

Figure S5 Complete mission data plot for the Fontaine
Maru.
(PDF)

Figure S6 Hurricane tracking plot and glider Benjamin
track. Purple symbols indicate position at 1200 UTC on 31 Dec.

2012.

(TIF)

Figure S7 Diel pattern of chl fluorescence and oil
CDOM from the equatorial Pacific. A. chl fluorescence, B.

oil CDOM. Position of glider Benjamin on 12 August 2012: 1.511

uS 170.621 uW. Dark bars indicate night time.

(TIF)

Figure S8 Salinity plots in the eastern N. Pacific gyre.

Data is pooled from all 4 gliders. Letters A, B indicate the crossing

of the subtropical front, C indicates a salinity front at the southern

boundary of the high salinity gyre water.

(TIF)

Text S1
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