29 research outputs found

    Aflibercept for Gastrointestinal Bleeding in Hereditary Hemorrhagic Telangiectasia: A Case Report.

    Full text link
    Herein, we present the first described hereditary hemorrhagic telangiectasia (HHT) pa- tient treated with aflibercept for severe GI involvement after tachyphylaxis to bevacizumab, with promising results. HHT is a rare genetic disease characterized by systemic vascular malformations. Gastrointestinal telangiectasia is one of the major involvements that can produce chronic severe iron-deficiency anemia. Nowadays, support treatment with iron replacement therapy, red blood cell transfusions, and antiangiogenic drugs—mainly bevacizumab, a monoclonal antibody against vascular endothelial growth factor (VEGF)—are the main therapeutic options for this complication. The evidence of alternative drugs in patients with failure to this approach, such as tachyphylaxis to bevacizumab, is scarce. Aflibercept is a VEGF inhibitor with antiangiogenic properties approved for the treatment of different types of cancer and ocular neovascularization diseases

    Risk Factors of Daptomycin-Induced Eosinophilic Pneumonia in a Population with Osteoarticular Infection

    Get PDF
    Background: Daptomycin-induced eosinophilic pneumonia (DEP) is a rare but severe adverse effect and the risk factors are unknown. The aim of this study was to determine risk factors for DEP. Methods: A retrospective cohort study was performed at the Bone and Joint Infection Unit of the Hospital Universitari Bellvitge (January 2014-December 2018). To identify risk factors for DEP, cases were divided into two groups: those who developed DEP and those without DEP. Results: Among the whole cohort (n = 229) we identified 11 DEP cases (4.8%) and this percentage almost doubled in the subgroup of patients ≥70 years (8.1%). The risk factors for DEP were age ≥70 years (HR 10.19, 95%CI 1.28-80.93), therapy >14 days (7.71, 1.98-30.09) and total cumulative dose of daptomycin ≥10 g (5.30, 1.14-24.66). Conclusions: Clinicians should monitor cumulative daptomycin dosage to minimize DEP risk, and be cautious particularly in older patients when the total dose of daptomycin exceeds 10 g

    Z2Z4-additive codes

    Get PDF
    Altres ajuts: UAB PNL2006-13The Combinatoric, Coding and Security Group (CCSG) is a research group in the Department of Information and Communications Engineering (DEIC) at the Universitat Aut'onoma de Barcelona (UAB). The research group CCSG has been uninterruptedly working since 1987 in several projects and research activities on Information Theory, Communications, Coding Theory, Source Coding, Cryptography, Electronic Voting, Network Coding, etc. The members of the group have been producing mainly results on optimal coding. Specifically, the research has been focused on uniformly-packed codes; perfect codes in the Hamming space; perfect codes in distance-regular graphs; the classification of optimal codes of a given length; and codes which are close to optimal codes by some properties, for example, Reed-Muller codes, Preparata codes, Kerdock codes and Hadamard codes. Part of the research developed by CCSG deals with Z2Z4-linear codes. There are no symbolic software to work with these codes, so the members of CCSG have been developing this new package that supports the basic facilities for Z2Z4-additive codes. Specifically, this Magma package generalizes most of the known functions for codes over the ring Z4, which are subgroups of Zn4, to Z2Z4-additive codes, which are subgroups of Zγ2 × Zδ4, maintaining all the functionality for codes over Z4 and adding new functions which, not only generalize the previous ones, but introduce new variants when it is needed. A beta version of this new package for Z2Z4-additive codes and this manual with the description of all functions can be downloaded from the web page http://ccsg.uab.cat. For any comment or further information about this package, you can send an e-mail to [email protected]. The authors would like to thank Lorena Ronquillo, Jaume Pernas, Roger Ten-Valls, and Cristina Diéguez for their contributions developing some parts of this Magma package

    Z2Z4-additive codes

    Get PDF
    Altres ajuts: UAB PNL2006-13The Combinatoric, Coding and Security Group (CCSG) is a research group in the Department of Information and Communications Engineering (DEIC) at the Universitat Aut'onoma de Barcelona (UAB). The research group CCSG has been uninterruptedly working since 1987 in several projects and research activities on Information Theory, Communications, Coding Theory, Source Coding, Cryptography, Electronic Voting, Network Coding, etc. The members of the group have been producing mainly results on optimal coding. Specifically, the research has been focused on uniformly-packed codes; perfect codes in the Hamming space; perfect codes in distance-regular graphs; the classification of optimal codes of a given length; and codes which are close to optimal codes by some properties, for example, Reed-Muller codes, Preparata codes, Kerdock codes and Hadamard codes. Part of the research developed by CCSG deals with Z2Z4-linear codes. There are no symbolic software to work with these codes, so the members of CCSG have been developing this new package that supports the basic facilities for Z2Z4-additive codes. Specifically, this Magma package generalizes most of the known functions for codes over the ring Z4, which are subgroups of Zn4, to Z2Z4-additive codes, which are subgroups of Zγ2 × Zδ4, maintaining all the functionality for codes over Z4 and adding new functions which, not only generalize the previous ones, but introduce new variants when it is needed. A beta version of this new package for Z2Z4-additive codes and this manual with the description of all functions can be downloaded from the web page http://ccsg.uab.cat. For any comment or further information about this package, you can send an e-mail to [email protected]. The authors would like to thank Lorena Ronquillo, Jaume Pernas, Roger Ten-Valls, and Cristina Diéguez for their contributions developing some parts of this Magma package

    Ultrasensitive multiplex optical quantification of bacteria in large samples of biofluids

    Get PDF
    Efficient treatments in bacterial infections require the fast and accurate recognition of pathogens, with concentrations as low as one per milliliter in the case of septicemia. Detecting and quantifying bacteria in such low concentrations is challenging and typically demands cultures of large samples of blood (~1 milliliter) extending over 24-72 hours. This delay seriously compromises the health of patients. Here we demonstrate a fast microorganism optical detection system for the exhaustive identification and quantification of pathogens in volumes of biofluids with clinical relevance (~1 milliliter) in minutes. We drive each type of bacteria to accumulate antibody functionalized SERS-labelled silver nanoparticles. Particle aggregation on the bacteria membranes renders dense arrays of inter-particle gaps in which the Raman signal is exponentially amplified by several orders of magnitude relative to the dispersed particles. This enables a multiplex identification of the microorganisms through the molecule-specific spectral fingerprints

    Comprehensive establishment and characterization of orthoxenograft mouse models of malignant peripheral nerve sheath tumors for personalized medicine

    Get PDF
    Malignant peripheral nerve sheath tumors (MPNSTs) are soft-tissue sarcomas that can arise either sporadically or in association with neurofibromatosis type 1 (NF1). These aggressive malignancies confer poor survival, with no effective therapy available. We present the generation and characterization of five distinct MPNST orthoxenograft models for preclinical testing and personalized medicine. Four of the models are patient-derived tumor xenografts (PDTX), two independent MPNSTs from the same NF1 patient and two from different sporadic patients. The fifth model is an orthoxenograft derived from an NF1-related MPNST cell line. All MPNST orthoxenografts were generated by tumor implantation, or cell line injection, next to the sciatic nerve of nude mice, and were perpetuated by 7-10 mouse-to-mouse passages. The models reliably recapitulate the histopathological properties of their parental primary tumors. They also mimic distal dissemination properties in mice. Human stroma was rapidly lost after MPNST engraftment and replaced by murine stroma, which facilitated genomic tumor characterization. Compatible with an origin in a catastrophic event and subsequent genome stabilization, MPNST contained highly altered genomes that remained remarkably stable in orthoxenograft establishment and along passages. Mutational frequency and type of somatic point mutations were highly variable among the different MPNSTs modeled, but very consistent when comparing primary tumors with matched orthoxenografts generated. Unsupervised cluster analysis and principal component analysis (PCA) using an MPNST expression signature of ~1,000 genes grouped together all primary tumor-orthoxenograft pairs. Our work points to differences in the engraftment process of primary tumors compared with the engraftment of established cell lines. Following standardization and extensive characterization and validation, the orthoxenograft models were used for initial preclinical drug testing. Sorafenib (a BRAF inhibitor), in combination with doxorubicin or rapamycin, was found to be the most effective treatment for reducing MPNST growth. The development of genomically well-characterized preclinical models for MPNST allowed the evaluation of novel therapeutic strategies for personalized medicine

    Comprehensive establishment and characterization of orthoxenograft mouse models of malignant peripheral nerve sheath tumors for personalized medicine

    Full text link
    Malignant peripheral nerve sheath tumors (MPNSTs) are soft-tissue sarcomas that can arise either sporadically or in association with neurofibromatosis type 1 (NF1). These aggressive malignancies confer poor survival, with no effective therapy available. We present the generation and characterization of five distinct MPNST orthoxenograft models for preclinical testing and personalized medicine. Four of the models are patient-derived tumor xenografts (PDTX), two independent MPNSTs from the same NF1 patient and two from different sporadic patients. The fifth model is an orthoxenograft derived from an NF1-related MPNST cell line. All MPNST orthoxenografts were generated by tumor implantation, or cell line injection, next to the sciatic nerve of nude mice, and were perpetuated by 7-10 mouse-to-mouse passages. The models reliably recapitulate the histopathological properties of their parental primary tumors. They also mimic distal dissemination properties in mice. Human stroma was rapidly lost after MPNST engraftment and replaced by murine stroma, which facilitated genomic tumor characterization. Compatible with an origin in a catastrophic event and subsequent genome stabilization, MPNST contained highly altered genomes that remained remarkably stable in orthoxenograft establishment and along passages. Mutational frequency and type of somatic point mutations were highly variable among the different MPNSTs modeled, but very consistent when comparing primary tumors with matched orthoxenografts generated. Unsupervised cluster analysis and principal component analysis (PCA) using an MPNST expression signature of ~1,000 genes grouped together all primary tumor-orthoxenograft pairs. Our work points to differences in the engraftment process of primary tumors compared with the engraftment of established cell lines. Following standardization and extensive characterization and validation, the orthoxenograft models were used for initial preclinical drug testing. Sorafenib (a BRAF inhibitor), in combination with doxorubicin or rapamycin, was found to be the most effective treatment for reducing MPNST growth. The development of genomically well-characterized preclinical models for MPNST allowed the evaluation of novel therapeutic strategies for personalized medicine

    Pasados y presente. Estudios para el profesor Ricardo García Cárcel

    Get PDF
    Ricardo García Cárcel (Requena, 1948) estudió Historia en Valencia bajo el magisterio de Joan Reglà, con quien formó parte del primer profesorado de historia moderna en la Universidad Autónoma de Barcelona. En esta universidad, desde hace prácticamente cincuenta años, ha desarrollado una extraordinaria labor docente y de investigación marcada por un sagaz instinto histórico, que le ha convertido en pionero de casi todo lo que ha estudiado: las Germanías, la historia de la Cataluña moderna, la Inquisición, las culturas del Siglo de Oro, la Leyenda Negra, Felipe II, Felipe V, Austrias y Borbones, la guerra de la Independencia, la historia cultural, los mitos de la historia de España... Muy pocos tienen su capacidad para reflexionar, ordenar, analizar, conceptualizar y proponer una visión amplia y llena de matices sobre el pasado y las interpretaciones historiográficas. A su laboriosidad inimitable se añade una dedicación sin límites en el asesoramiento de alumnos e investigadores e impulsando revistas, dosieres, seminarios o publicaciones colectivas. Una mínima correspondencia a su generosidad lo constituye este volumen a manera de ineludible agradecimiento
    corecore