1,303 research outputs found

    The cosmological Lithium problem outside the Galaxy: the Sagittarius globular cluster M54

    Full text link
    The cosmological Li problem is the observed discrepancy between Li abundance, A(Li), measured in Galactic dwarf, old and metal-poor stars (traditionally assumed to be equal to the initial value A(Li)_0), and that predicted by standard Big Bang Nucleosynthesis calculations (A(Li)_{BBN}). Here we attack the Li problem by considering an alternative diagnostic, namely the surface Li abundance of red giant branch stars that in a colour magnitude diagram populate the region between the completion of the first dredge-up and the red giant branch bump. We obtained high-resolution spectra with the FLAMES facility at the Very Large Telescope for a sample of red giants in the globular cluster M54, belonging to the Sagittarius dwarf galaxy. We obtain A(Li)=+0.93+-0.11 dex, translating -- after taking into account the dilution due to the dredge up-- to initial abundances (A(Li)_0) in the range 2.35--2.29 dex, depending on whether or not atomic diffusion is considered. This is the first measurement of Li in the Sagittarius galaxy and the more distant estimate of A(Li)_0 in old stars obtained so far. The A(Li)_0 estimated in M54 is lower by ~0.35 dex than A(Li)_{BBN}, hence incompatible at a level of ~3sigma. Our result shows that this discrepancy is a universal problem concerning both the Milky Way and extra-galactic systems. Either modifications of BBN calculations, or a combination of atomic diffusion plus a suitably tuned additional mixing during the main sequence, need to be invoked to solve the discrepancy.Comment: Accepted by MNRAS, 10 pages, 5 figures, 1 tabl

    A hot horizontal branch star with a close K-type main-sequence companion

    Get PDF
    Dynamical interactions in binary systems are thought to play a major role in the formation of extreme horizontal branch stars (EHBs) in the Galactic field. However, it is still unclear if the same mechanisms are at work in globular clusters, where EHBs are predominantly single stars. Here we report on the discovery of a unique close binary system (period ~1.61 days) in the globular cluster NGC6752, comprising an EHB and a main-sequence companion of 0.63+-0.05 Msun. Such a system has no counterpart among nearly two hundred known EHB binaries in the Galactic field. Its discovery suggests that either field studies are incomplete, missing this type of systems possibly because of selection effects, or that a particular EHB formation mechanism is active in clusters but not in the field

    Predicting Neutrinoless Double Beta Decay

    Get PDF
    We give predictions for the neutrinoless double beta decay rate in a simple variant of the A_4 family symmetry model. We show that there is a lower bound for the neutrinoless double beta decay amplitude even in the case of normal hierarchical neutrino masses, corresponding to an effective mass parameter |m_{ee}| >= 0.17 \sqrt{\Delta m^2_{ATM}}. This result holds both for the CP conserving and CP violating cases. In the latter case we show explicitly that the lower bound on |m_{ee}| is sensitive to the value of the Majorana phase. We conclude therefore that in our scheme, neutrinoless double beta decay may be accessible to the next generation of high sensitivity experiments.Comment: 4 pages, 5 figures, 1 tabl

    Degenerate neutrinos from a supersymmetric A_4 model

    Full text link
    We investigate the supersymmetric A_4 model recently proposed by Babu, Ma and Valle. The model naturally gives quasi-degenerate neutrinos that are bi-largely mixed, in agreement with observations. Furthermore, the mixings in the quark sector are constrained to be small, making it a complete model of the flavor structure. Moreover, it has the interesting property that CP-violation in the leptonic sector is maximal (unless vanishing). The model exhibit a close relation between the slepton and lepton sectors and we derive the slepton spectra that are compatible with neutrino data and the present bounds on flavor-violating charged lepton decays. The prediction for the branching ratio of the decay tau -> mu gamma has a lower limit of 10^{-9}. In addition, the overall neutrino mass scale is constrained to be larger than 0.3 eV. Thus, the model will be tested in the very near future.Comment: 11 pages, 6 figures. Talk given at the International Workshop on Astroparticle and High Energy Physics (AHEP), Valencia, Spain, 14-18 Oct. 200

    Minimal supergravity radiative effects on the tri-bimaximal neutrino mixing pattern

    Get PDF
    We study the stability of the Harrison-Perkins-Scott (HPS) mixing pattern, assumed to hold at some high energy scale, against supersymmetric radiative corrections. We work in the framework of a reference minimal supergravity model (mSUGRA) where supersymmetry breaking is universal and flavor-blind at unification. The radiative corrections considered include both RGE running as well as threshold effects. We find that in this case the solar mixing angle can only increase with respect to the HPS reference value, while the atmospheric and reactor mixing angles remain essentially stable. Deviations from the solar angle HPS prediction towards lower values would signal novel contributions from physics beyond the simplest mSUGRA model.Comment: 13 pages, 3 figures; added reference; final version for publicatio

    Lepton flavour violating stau decays versus seesaw parameters: correlations and expected number of events for both seesaw type-I and II

    Full text link
    In minimal supergravity (mSugra), the neutrino sector is related to the slepton sector by means of the renormalization group equations. This opens a door to indirectly test the neutrino sector via measurements at the LHC. Concretely, for the simplest seesaw type-I, we present the correlations between seesaw parameters and ratio of stau lepton flavour violating (LFV) branching ratios. We find some simple, extreme scenarios for the unknown right-handed parameters, where ratios of LFV rates correlate with neutrino oscillation parameters. On the other hand, we scan the mSugra parameter space, for both seesaw type-I and II, to find regions where LFV stau decays can be maximized, while respecting low-energy experimental bounds. We estimate the expected number of events at the LHC for a sample luminosity of L = 100 fb^{-1}.Comment: 10 pages, 6 figures, 1 table, to appear in the proceedings of DISCRETE'08 Symposium on Prospects in the Physics of Discrete Symmetries, 11-16 December 2008, Valencia, Spain; some comments adde

    Probing minimal supergravity in the type-I seesaw mechanism with lepton flavour violation at the CERN LHC

    Get PDF
    The most general supersymmetric seesaw mechanism has too many parameters to be predictive and thus can not be excluded by any measurements of lepton flavour violating (LFV) processes. We focus on the simplest version of the type-I seesaw mechanism assuming minimal supergravity boundary conditions. We compute branching ratios for the LFV scalar tau decays, τ~2(e,μ)+χ10{\tilde \tau}_2 \to (e,\mu) + \chi^0_1, as well as loop-induced LFV decays at low energy, such as lilj+γl_i \to l_j + \gamma and li3ljl_i \to 3 l_j, exploring their sensitivity to the unknown seesaw parameters. We find some simple, extreme scenarios for the unknown right-handed parameters, where ratios of LFV branching ratios correlate with neutrino oscillation parameters. If the overall mass scale of the left neutrinos and the value of the reactor angle were known, the study of LFV allows, in principle, to extract information about the so far unknown right-handed neutrino parameters.Comment: 29 pages, 27 figures; added explanatory comments, corrected typos, final version for publicatio

    Production and decays of supersymmetric Higgs bosons in spontaneously broken R-parity

    Get PDF
    We study the mass spectra, production and decay properties of the lightest supersymmetric CP-even and CP-odd Higgs bosons in models with spontaneously broken R-parity (SBRP). We compare the resulting mass spectra with expectations of the Minimal Supersymmetric Standard Model (MSSM), stressing that the model obeys the upper bound on the lightest CP-even Higgs boson mass. We discuss how the presence of the additional scalar singlet states affects the Higgs production cross sections, both for the Bjorken process and the "associated production". The main phenomenological novelty with respect to the MSSM comes from the fact that the spontaneous breaking of lepton number leads to the existence of the majoron, denoted J, which opens new decay channels for supersymmetric Higgs bosons. We find that the invisible decays of CP-even Higgses can be dominant, while those of the CP-odd bosons may also be sizeable.Comment: 21 pages, 8 figures; minor changes, final version for publicatio
    corecore