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Predicting Neutrinoless Double Beta Decay
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We give predictions for the neutrinoless double beta decay rate in a simple variant of the A4

family symmetry model. We show that there is a lower bound for the ββ0ν amplitude even in the
case of normal hierarchical neutrino masses, corresponding to an effective mass parameter |mee| ≥

0.17
√

∆m2
atm. This result holds both for the CP conserving and CP violating cases. In the latter

case we show explicitly that the lower bound on |mee| is sensitive to the value of the Majorana
phase. We conclude therefore that in our scheme, ββ0ν may be accessible to the next generation of
high sensitivity experiments.
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Are neutrinos their own antiparticles? This is one of
the most basic current unknowns in neutrino physics. Of
all possible manifestations of neutrino masses, neutrino-
less double beta decay (ββ0ν , for short) offers – to date
– the only potentially viable way to answer this question.
If ββ0ν exists, then neutrino masses are Majorana in na-
ture, irrespective of their ultimate origin [1]. Together
with cosmology [2] and direct kinematical searches in tri-
tium decay [3], ββ0ν offers one of the three main com-
plementary ways to probe the absolute scale of neutrino
masses.

Current experimental limits from ββ0ν on the effec-
tive Majorana mass of the neutrino mee are of order
mee ≤ 0.3 − 1 eV [4, 5]. We note that a claim for a
finite ββ0ν rate has been published in [6], but this has
so far not been confirmed by any other experiment. A
recent proposal [7] aims explicitly at testing the half-
life range suggested in [6]. However, future ββ0ν exper-
iments may be able to reach down to much lower mass
scales. Many experiments sensitive to mee ≃ 0.05 eV
have already been discussed; see for example [8, 9]. In
the longer-term future, even mee ≃ 0.01 eV [10, 11] does
not seem impossible.

The historic confirmation of neutrino oscillations over
the last few years [12], together with some basic the-
ory, suggests that ββ0ν is expected, although in general
no lower bound on the magnitude of the expected ef-
fect can be given. Theoretical input is therefore needed.
Currently the origin of neutrino masses is completely un-
known. The basic dimension–five operator which leads
to neutrino masses [13] can arise from a variety of mech-
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anisms characterized by vastly different scales. Alter-
natives include the seesaw mechanism [14, 15, 16] and
low–energy R−parity violating supersymmetry [17]. In
neither case is it possible, in general, to establish a lower
bound on the magnitude of the ββ0ν rate.

Here we consider a simple phenomenological model
based on a new realization of the A4 family symme-
try [18, 19, 20] in which no SU(3) ⊗ SU(2) ⊗ U(1) sin-
glet neutrinos are introduced. Instead, the small neutrino
masses arise from the small induced vacuum expectation
values (VEVs) generated for the neutral components of
triplet Higgs bosons [15, 21], transforming nontrivially
under the A4 family symmetry. The lepton and Higgs
particle content and their transformation properties un-
der A4 and SU(2) ⊗ U(1) are specified in Table I. With

Fields L lc φ1 φ2 φ3 η1 η2 η3 ξ

A4 3 3 1 1
′

1
′′

1 1
′

1
′′

3

SU(2)L 2 1 2 3 3

Y –1 2 –1 2 2

TABLE I: Lepton and scalar boson quantum numbers

these transformation properties, the charged lepton mass
matrix is already diagonal in the flavor basis, with

me = h1v1 + h2v2 + h3v3

mµ = h1v1 + ωh2v2 + ω2h3v3

mτ = h1v1 + ω2h2v2 + ωh3v3

where hi are charged lepton Yukawa couplings, vi = 〈φ0

i 〉
and ω is a complex cubic root of unity satisfying 1+ ω +
ω2 = 0. The neutrino mass matrix is then of the form

Mν =





a + b + c f e
f a + ωb + ω2c d
e d a + ω2b + ωc



 (1)
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where the only non-diagonal entries are those of the A4

triplet ξ. Here we have defined

a = λ1〈η0

1
〉

b = λ2〈η0

2〉
c = λ3〈η0

3
〉

d = κ〈ξ0

1
〉

e = κ〈ξ0

2〉
f = κ〈ξ0

3
〉

(2)

where λi, κ and 〈η0

i 〉, 〈ξ0

i 〉 are triplet Yukawa couplings,
and VEVs, respectively. Let us further assume that
the conditions b = c, and d = e = f hold. Whereas
the former is an ad hoc assumption, the latter can
be maintained naturally because of a residual Z3

symmetry. Note that Mν has a very remarkable (and
possibly unique) property here in that each entry is
renormalized by the charged-lepton Yukawa couplings
in the same way, i.e. |h1|2 + |h2|2 + |h3|2, instead of
being proportional to m2

i +m2

j as in the Standard Model.

It is easy to see that in the above limit we have the
prediction

θ23 = π/4, θ13 = 0

which matches well with the neutrino oscillation
data [12]. Furthermore it can be shown that, in the limit
where the solar mass splitting is neglected, b and d can be
made real, so that the atmospheric neutrino mass split-
ting takes on a very simple form

∆m2

32
= 6bd ≡ ∆m2

atm
(3)

The solar neutrino mass splitting ∆m2

sol
≪ ∆m2

atm
can

be expressed as

∆m2

21 =
√

T 2

1
+ T 2

2
+ T 2

3
≡ ∆m2

sol
(4)

where

T1 ≡ 6
√

2|b||d| sin(φ2) (5)

T2 ≡ 2
√

2|d|
(

2|a| cos(φ1) + |b| cos(φ2) + |d|
)

(6)

T3 = −3|b|2 + |d|2 − 6|a||b| cos(φ1 + φ2) (7)

+ 2|a||d| cos(φ1) − 2|b||d| cos(φ2)

with φ1 ≡ φa − φd and φ2 ≡ φd − φb, where a =
|a| exp(iφa), b = |b| exp(iφb) and d = |d| exp(iφd). The
condition in Eq. (4) leads to three inequalities

|Ti| ≤ ∆m2

sol

which, normalized by ∆m2

atm
, can be expressed in terms

of the small parameter α ≡ ∆m2

sol
/∆m2

atm
as

√
2| sin(φ2)| ≤ α (8)

√
2

3|b|
∣

∣

∣2|a| cos(φ1) + |b| cos(φ2) + |d|
∣

∣

∣ ≤ α (9)

1

6|b||d|
∣

∣

∣ − 3|b|2 + |d|2 − 6|a||b| cos(φ1 + φ2) (10)

+2|a||d| cos(φ1) − 2|b||d| cos(φ2)
∣

∣

∣ ≤ α

where the current allowed values of α are shown in
Fig.13 of Ref. [12].

As for the solar mixing angle, it is given here by

t2S ≡ tan(2θ12) =
2
√

2d

3b − d
(11)

which reduces to

tan2 θ12 = 1/2 (12)

in two ways, namely,

b = 0, b = 2d/3 (13)

Current fits of solar, reactor, atmospheric and accelerator
neutrino oscillation data lead to a best fit point to the
solar mixing angle for which tan2 θ12 is slightly less than
1/2. Performing a series expansion of tan2 θ12 around the
two solutions in Eq. (13), we get

tan2 θ12 ≃ 1

2
+

b

d
(14)

tan2 θ12 ≃ 1

2
− 1

d

(

b − 2

3
d

)

(15)

These two branches are depicted in Fig. 1. The positive
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FIG. 1: Solar mixing angle, tan2 θ12, vs. b/d.

horizontal axis corresponds to a normal hierarchy (NH)
neutrino spectrum, while the negative part corresponds
to inverse hierarchy (IH), as depicted in Fig. 1. This
behavior is also recognized in the model of [22].

We now turn to neutrinoless double beta decay. The
neutrino–exchange amplitude for this process is simply
given by

〈mν〉 = mee = a + 2b (16)

In the case of real parameters, we can solve the following



3

system of equations

∆m2

sol
≡ ∆m2

21
= |2a + b + d|

√

(d − 3b)2 + 8d2

∆m2

atm
≡ ∆m2

32 = 6bd

t2S ≡ tan(2θ12) =
2
√

2d

3b − d



















and express the parameters a, b and d in terms of ex-
perimentally measurable ones ∆m2

sol
, ∆m2

atm
and t2S .

Substituting in Eq. (16) we can therefore express 〈mν〉
in terms of these measured observables. We then obtain,
up to an overall sign,

mee
√

∆m2
atm

= Sign[∆m2

atm
]

1
√

2
√

2t2S + t2
2S

(17)

±Sign[2
√

2t2S + t2
2S ]

α
√

2
√

2t2S + t2
2S

4
√

1 + t2
2S

The calculated values of |mee/
√

∆m2
atm

| as functions of
t2S according to Eq. (17) are shown in Fig. 2. It can
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FIG. 2: |mee/
√

∆m2
atm| vs. |t2S | according to Eq. (17). The

bound depends slightly on the value of α: the left panel cor-
responds to α = 0.022 and the right one to α = 0.065. The
dark (red) lines correspond to normal hierarchy, while the grey
(green) line is for the inverse hierarchy case. The vertical line
corresponds to the horizontal line in Fig. 1 at tan2 θ12 = 1/2.

be seen that given the currently allowed experimental 3σ
range

tan2 θ12 ∈ [0.30, 0.61] (18)

we can set lower bounds for |mee/
√

∆m2
atm

|:

0.17 < |mee/
√

∆m2
atm

| for NH (19)

0.70 < |mee/
√

∆m2
atm

| for IH (20)

Note that the lower bound on ββ0ν for the NH case is
especially relevant, as it is absent in the generic case. It
results from this specific realization of the A4 symmetry
and is also in contrast with previous A4–based models
that led to quasi–degenerate neutrinos [19, 23].

Moreover, should future precision experiments narrow
down the experimental range for tan2 θ12 then we might

be able to distinguish between both neutrino mass hi-
erarchies. For example, if tan2 θ12 ≤ 1/2 could ever be
established, then we would have

0.23 < |mee/
√

∆m2
atm

| < 0.41 for NH (21)

0.70 < |mee/
√

∆m2
atm

| for IH (22)

It can also be seen that, up to order α corrections, mee

can only be zero if tan2 θ12 = 1, now strongly rejected
experimentally. Note that the two solutions in Fig. 2
correspond to the two branches depicted in Fig. 1. One
can see that only in the branch corresponding to the so-
lution b = 0 and for values of tan2 θ12 that are less than
1/2, there is a relative minus sign between b and d, which
is the condition for inverse hierarchy, as can be seen from
Eq. (3).

In the general case of complex parameters, lower
bounds on |mee/

√

∆m2
atm

| can also be established for
each hierarchy. This task is simplified greatly by taking
into account the reliable approximations sinφ2 ≃ 0, and
2|a|cosφ1 + |b|cosφ2 + |d| ≃ 0. From Fig. 3, we see that in

the complex case, lower bounds on |mee/
√

∆m2
atm

| are
indeed also established for each hierarchy. By compar-
ing Fig. 3 with the right panel in Fig. 2 we find that
these lower bounds are in fact exactly the same as ob-
tained in the real case. The robustness of these bounds
is easily understood. It follows from the fact that the
maximum degree of destructive interference between the
three neutrino–exchange contributions occurs in the real
case with appropriate CP parities [24].
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FIG. 3: |mee/
√

∆m2
atm| vs. |t2S | for α = 0.065 when complex

parameters are allowed.

The left-rising lines correspond to inverse hierarchy,
while all others refer to the case of normal hierarchy. The
lower–lying pairs of solid lines correspond to the lower
bounds already discussed in Fig. 2. Again, the vertical
line corresponds to tan2 θ12 = 1/2. Finally, the remain-
ing lines correspond to non-zero values of the relevant
CP-violating phase varying cos(φ1) over the range [0,1]
in equally–spaced steps. It is conceptually interesting to
note that this phase is “Majorana type” [15, 25], as we
are still considering the case θ13 = 0.
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Last, but not least, we find it very interesting also
that the lower bound on |mee/

√

∆m2
atm

| which we have
obtained depends on the value of the Majorana violat-
ing phase | cos(φ1)|. We can see from Fig. 4 that the

lower bounds on |mee/
√

∆m2
atm

| for each hierarchy be-
come weaker for cos(φ1) = 1. Finally, we mention that,
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FIG. 4: Lower bound on |mee/
√

∆m2
atm| vs. | cos(φ1)|, given

current t2S uncertainty. The lines in dark (red) and grey
(green) correspond to normal and inverse hierarchy respec-
tively.

even though for simplicity we have focused on the case
b = c, all results can be generalized to the case b 6= c, in
which case θ13 is allowed to be nonzero.

In summary, we have given predictions for the neu-
trinoless double beta decay rate in a simple hierarchical
variant of the A4 family symmetry model. We showed
that there is a lower bound for the ββ0ν amplitude even
in the case of normal hierarchical neutrino masses. We
have seen that the bound is robust as it holds irrespective
of whether CP is conserved or not. In the latter case we
show explicitly how the lower bound on |mee| is sensitive
to the value of the Majorana phase. Our scheme suggests
that neutrinoless double beta decay may be within reach
of the next generation of high sensitivity experiments.
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