4,152 research outputs found
Lyapunov functionals for boundary-driven nonlinear drift-diffusions
We exhibit a large class of Lyapunov functionals for nonlinear
drift-diffusion equations with non-homogeneous Dirichlet boundary conditions.
These are generalizations of large deviation functionals for underlying
stochastic many-particle systems, the zero range process and the
Ginzburg-Landau dynamics, which we describe briefly. As an application, we
prove linear inequalities between such an entropy-like functional and its
entropy production functional for the boundary-driven porous medium equation in
a bounded domain with positive Dirichlet conditions: this implies exponential
rates of relaxation related to the first Dirichlet eigenvalue of the domain. We
also derive Lyapunov functions for systems of nonlinear diffusion equations,
and for nonlinear Markov processes with non-reversible stationary measures
Exponential Runge-Kutta methods for stiff kinetic equations
We introduce a class of exponential Runge-Kutta integration methods for
kinetic equations. The methods are based on a decomposition of the collision
operator into an equilibrium and a non equilibrium part and are exact for
relaxation operators of BGK type. For Boltzmann type kinetic equations they
work uniformly for a wide range of relaxation times and avoid the solution of
nonlinear systems of equations even in stiff regimes. We give sufficient
conditions in order that such methods are unconditionally asymptotically stable
and asymptotic preserving. Such stability properties are essential to guarantee
the correct asymptotic behavior for small relaxation times. The methods also
offer favorable properties such as nonnegativity of the solution and entropy
inequality. For this reason, as we will show, the methods are suitable both for
deterministic as well as probabilistic numerical techniques
The Hubbard model in the two-pole approximation
The two-dimensional Hubbard model is analyzed in the framework of the
two-pole expansion. It is demonstrated that several theoretical approaches,
when considered at their lowest level, are all equivalent and share the
property of satisfying the conservation of the first four spectral momenta. It
emerges that the various methods differ only in the way of fixing the internal
parameters and that it exists a unique way to preserve simultaneously the Pauli
principle and the particle-hole symmetry. A comprehensive comparison with
respect to some general symmetry properties and the data from quantum Monte
Carlo analysis shows the relevance of imposing the Pauli principle.Comment: 12 pages, 8 embedded Postscript figures, RevTeX, submitted to Int.
Jou. Mod. Phys.
On the speed of approach to equilibrium for a collisionless gas
We investigate the speed of approach to Maxwellian equilibrium for a
collisionless gas enclosed in a vessel whose wall are kept at a uniform,
constant temperature, assuming diffuse reflection of gas molecules on the
vessel wall. We establish lower bounds for potential decay rates assuming
uniform bounds on the initial distribution function. We also obtain a
decay estimate in the spherically symmetric case. We discuss with particular
care the influence of low-speed particles on thermalization by the wall.Comment: 22 pages, 1 figure; submitted to Kinetic and Related Model
On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity
We prove an inequality on the Wasserstein distance with quadratic cost
between two solutions of the spatially homogeneous Boltzmann equation without
angular cutoff, from which we deduce some uniqueness results. In particular, we
obtain a local (in time) well-posedness result in the case of (possibly very)
soft potentials. A global well-posedeness result is shown for all regularized
hard and soft potentials without angular cutoff. Our uniqueness result seems to
be the first one applying to a strong angular singularity, except in the
special case of Maxwell molecules.
Our proof relies on the ideas of Tanaka: we give a probabilistic
interpretation of the Boltzmann equation in terms of a stochastic process. Then
we show how to couple two such processes started with two different initial
conditions, in such a way that they almost surely remain close to each other
Uniqueness of bounded solutions for the homogeneous Landau equation with a Coulomb potential
We prove the uniqueness of bounded solutions for the spatially homogeneous
Fokker-Planck-Landau equation with a Coulomb potential. Since the local (in
time) existence of such solutions has been proved by Arsen'ev-Peskov (1977), we
deduce a local well-posedness result. The stability with respect to the initial
condition is also checked
- âŠ