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Abstract. We investigate the speed of approach to Maxwellian equilibrium

for a collisionless gas enclosed in a vessel whose wall are kept at a uniform,
constant temperature, assuming diffuse reflection of gas molecules on the vessel

wall. We establish lower bounds for potential decay rates assuming uniform Lp

bounds on the initial distribution function. We also obtain a decay estimate in
the spherically symmetric case. We discuss with particular care the influence

of low-speed particles on thermalization by the wall.

In memory of Carlo Cercignani (1939-2010)

1. Introduction. Relaxation to equilibrium is a fundamental issue in statistical
mechanics. In the kinetic theory of gases, convergence to equilibrium is formulated
in terms of the asymptotic behavior of solutions of the Boltzmann equation in the
long time limit. In [4], Cercignani formulated a quite remarkable conjecture, assert-
ing the domination of Boltzmann’s relative H functional by a constant multiple of
Boltzmann’s entropy production functional. If true, Cercignani’s conjecture would
imply exponential relaxation to equilibrium for space homogeneous solutions of the
Boltzmann equation, and would have important consequences even for space in-
homogeneous solutions. This conjecture was subsequently disproved in a series of
papers by Bobylev, Cercignani and Wennberg [2, 3, 14]. And yet, in the words of
Villani, “Cercignani’s conjecture is sometimes true, and almost always true” [12].
Slightly later, Desvillettes and Villani [7] studied the speed of convergence to equi-
librium for space inhomogeneous solutions of the Boltzmann equation, under rather
stringent conditions of regularity, decay at large velocities and positivity, but with-
out assuming that the initial data is close to equilibrium. They found that the
distance between the distribution function at time t and the final equilibrium state
decays like O(t−m) for each m > 0 as t → +∞. Their result makes critical use of
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the Boltzmann collision integral and entropy production, and of their combination
with the free transport operator (the left-hand side of the Boltzmann equation.)
In an earlier paper [5], Desvillettes had proved that Boltzmann’s entropy produc-
tion can be regarded as a distance between the distribution function and the set of
Maxwellian states. On the other hand, Guo proved in [9] that, for initial data close
enough to a uniform Maxwellian, solutions of the Boltzmann equation converge to
equilibrium at exponential speed.

In [7], Desvillettes and Villani treated the cases where the spatial domain is the
flat torus (equivalently, the Euclidian space with periodic initial data), or a smooth
bounded domain with either the specular or bounce-back reflection conditions at the
boundary. Therefore, convergence to equilibrium is driven by the collision process
alone, and the role of the boundary condition is rather indirect. In the long time
limit, the solution of the Boltzmann equation converges to a uniform Maxwellian
state whose density and temperature are given in terms of the initial data by the
conservation of total mass and total energy. The boundary condition is involved
only through its compatibility with the conservation laws of total mass and energy.
In a more recent work [13], Villani extended their result to the case where the gas is
enclosed in a vessel whose walls are maintained at a constant temperature, modeled
with an accommodation or diffuse reflection condition. In that case, mass is the
only quantity that is conserved under the dynamics of the Boltzmann equation, so
that the final equilibrium state is the centered, uniform Maxwellian with the wall
temperature and same total mass as the initial data. In that case, the boundary
condition has a direct influence on the relaxation to equilibrium. Nevertheless, the
combined effect of entropy production by the collision process and of free streaming,
an example of what is termed “hypocoercivity”, is the driving mechanism used by
Villani in his proof of relaxation to equilibrium [13].

However, it seems obvious from physical consideration that the accommodation
or diffuse reflection condition on a wall maintained at some constant temperature
is enough to drive the gas to an equilibrium state, and that the role of the collision
process is not as important as in the periodic, or specular or bounce-back reflection
cases — which are in any case less realistic.

In order to establish the role of Boltzmann’s collision integral in the rate of
relaxation to equilibrium, we consider the case of a collisionless gas enclosed in a
vessel whose surface is maintained at a constant temperature, and investigate the
speed of approach to equilibrium for such a system. The present paper provides
a theoretical confirmation of the numerical results obtained by the authors in [10]
in collaboration with Tsuji. Basically, while the collision process is not necessary
in the convergence to equilibrium, it greatly influences the speed of relaxation to
equilibrium. In the same spirit, Desvillettes and Salvarani [6] have investigated
the speed of relaxation to equilibrium in the case of linear collisional models where
the collision frequency is not uniformly bounded away from 0, by adapting the
hypocoercivity method.

We dedicate this piece of work to the memory of our teacher, friend and colleague
Carlo Cercignani, in recognition of his leading role in the mathematical theory of
the Boltzmann equation.

2. Statement of the problem. Consider a collisionless gas enclosed in a container
materialized by a bounded domain Ω in RN whose boundary ∂Ω is maintained at
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a constant temperature θw > 0. Its distribution function F ≡ F (t, x, v) satisfies
∂tF + v · ∇xF = 0 , (x, v) ∈ Ω×RN ,

F (t, x, v)|v ·nx| =
∫
v′·nx>0

F (t, x, v′)v′ ·nxK(x, v, dv′) , (x, v) ∈ Γ− ,

F
∣∣
t=0

= F in .

(1)

The notation nx designates the unit outward normal at the point x ∈ ∂Ω, and
we have used the notation

Γ+ := {(x, v) ∈ ∂Ω×RN | v · nx > 0} ,
Γ− := {(x, v) ∈ ∂Ω×RN | v · nx < 0} .

The boundary condition is given by the measure-valued kernel K(x, v, dv′) ≥ 0
satisfying the assumptions

(i) for each x ∈ ∂Ω, one has∫
v·nx<0

K(x, v, dv′)dv = dv′

(ii) for each x ∈ ∂Ω, one has

M(1,0,θ)(v)|v ·nx| =
∫
v′·nx>0

M(1,0,θ)(v
′)v′ ·nxK(x, v, dv′) , v ·nx < 0 ,

iff θ = θw. Throughout this paper, we use the following notation for the Maxwellian
distribution:

M(ρ,u,θ)(v) =
ρ

(2πθ)N/2
e−
|v−u|2

2θ

(Henceforth, we denote for simplicity Mw =M(1,0,θw).) With these notations, the
case of diffuse reflection corresponds with

K(x, v, dv′) :=
M(1,0,θw)(v)|v · nx|dv′∫

u·nx<0

M(1,0,θw)(u)|u · nx|du
.

The case of an accommodation boundary condition (i.e. the so-called Maxwell-type
condition) corresponds with

K(x, v, dv′) :=(1− α(x))δ(v′ − v + 2(v · nx)nx)

+ α(x)
M(1,0,θw)(v)|v · nx|dv′∫

u·nx<0

M(1,0,θw)(u)|u · nx|du
.

In the case of diffuse reflection, Arkeryd and Nouri [1] have proved that the
solution of (1) satisfies

F (t+ ·, ·, ·)→
M(1,0,θw)

|Ω|

∫∫
Ω×RN

F indxdv in L1([0, T ]× Ω×RN )

as t→ +∞.
In the present paper, we study in detail the following

Problem: Is there a decay rate E(t) → 0 as t → +∞, for which an asymptotic
estimate of the form∥∥∥∥F (t+ ·, ·, ·)−

M(1,0,θw)

|Ω|

∫∫
Ω×RN

F indxdv

∥∥∥∥
L1([0,T ]×Ω×RN )

= O(E(t)) (2)
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holds for each solution F of (1) uniformly as F in runs through certain classes of
bounded subsets of L1(RN ×RN )?

3. Negative results and lower bounds on E. We first consider the problem
of finding a decay rate that is uniform as F in runs through all bounded subsets of
L1(RN ×RN ).

Proposition 1. There does not exist any decay rate function E : R+ → R+ such
that E(t)→ 0 as t→ +∞ and∥∥∥∥F (t+ ·, ·, ·)−

M(1,0,θw)

|Ω|

∫∫
Ω×RN

F indxdv

∥∥∥∥
L1([0,T ]×Ω×RN )

≤ E(t)‖F in‖L1(RN×RN )

(3)

for each t ≥ 0.

Since the initial boundary value problem (1) is linear, if there is a long time
decay as in (2) uniformly as the initial data F in runs through bounded subsets of
L1, an inequality of the form (3) must hold.

Proof. Assume that the origin 0 ∈ Ω — if not, one can apply a translation in the
x-variable without changing the nature of the problem — and set R = 1

2dist(0, ∂Ω).

We henceforth denote by B the closed unit ball of RN , and by 1A the indicator
function of the set A.

For 0 < ε� 1, set

F in(x, v) =
1

ε2N
1εB(x)1εB(v)

(with εB := {εz | z ∈ B}) so that∫∫
F in(x, v)dxdv = |B|2 .

Call τ(x, v) := inf{t ≥ 0 |x − tv /∈ Ω}; obviously the solution F of (1) satisfies
F ≥ Φ, where Φ is the solution of the same free transport equation, with the same
initial data, but with absorbing boundary condition:

∂tΦ + v · ∇xΦ = 0 , (x, v) ∈ Ω×RN ,

Φ(t, x, v) = 0 , (x, v) ∈ Γ− ,

Φ
∣∣
t=0

= F in .

(4)

Solving for Φ along characteristics, one finds that

Φ(t, x, v) = F in(x− tv, v)10≤t≤τ(x,v) .

Now ∥∥∥∥∥F (t+ ·, ·, ·)−
M(1,0,θw)

|Ω|

∫∫
Ω×RN

F indxdv

∥∥∥∥∥
L1([0,T ]×Ω×RN )

=

∥∥∥∥F (t+ ·, ·, ·)− |B|
2

|Ω|
M(1,0,θw)

∥∥∥∥
L1([0,T ]×Ω×RN )

≥
∫ T

0

∫
Ω

∫
RN

(
F (t+ s, x, v)− |B|

2

|Ω|
M(1,0,θw)(v)

)+

dvdxds .
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Henceforth, if A ⊂ R3 and u ∈ R3, we denote A + u := {z + u | z ∈ A}. Since the
function z 7→ z+ = max(z, 0) is nondecreasing, one has∥∥∥∥∥F (t+ ·, ·, ·)−

M(1,0,θw)

|Ω|

∫∫
Ω×RN

F indxdv

∥∥∥∥∥
L1([0,T ]×Ω×RN )

≥
∫ T

0

∫
Ω

∫
RN

(
Φ(t+ s, x, v)− |B|

2

|Ω|
M(1,0,θw)(v)

)+

dvdxds

=

∫ T

0

∫
Ω

∫
RN

(
1

ε2N
1εB+(t+s)v(x)1εB(v)10≤t+s≤τ(x,v)

−|B|
2

|Ω|
M(1,0,θw)(v)

)+

dvdxds

≥
∫ T

0

∫
Ω

∫
RN

(
1

ε2N
1εB+(t+s)v(x)1εB(v)10≤(t+s)|v|≤R−ε

−|B|
2

|Ω|
M(1,0,θw)(v)

)+

dvdxds

since τ(x, v)|v| ≥ 2R− ε for each x ∈ εB. Now(
1

ε2N
1εB+(t+s)v(x)1εB(v)10≤(t+s)|v|≤R−ε −

|B|2

|Ω|
M(1,0,θw)(v)

)+

=
1

ε2N
1εB+(t+s)v(x)1εB(v)10≤(t+s)|v|≤R−ε

(
1− ε2N |B|2

|Ω|
M(1,0,θw)(v)

)+

≥ 1

ε2N
1εB+(t+s)v(x)1εB(v)10≤(t+s)|v|≤R−ε

(
1− ε2N |B|2

|Ω|(2πθw)N/2

)+

.

Then ∫ T

0

∫
Ω

∫
RN

1

ε2N
1εB+(t+s)v(x)1εB(v)10≤(t+s)|v|≤R−εdvdxds

= |B|
∫ T

0

∫
RN

1

εN
1εB(v)10≤(t+s)|v|≤R−εdvds

= |B|
∫ T

0

∫
RN

1

εN
10≤|v|≤min(ε,(R−ε)/t+s)dvds

= |B|
∫ T

0

1

εN
min

(
εN ,

(R− ε)N

(t+ s)N

)
ds

≥ |B| T
εN

min

(
εN ,

(R− ε)N

(t+ T )N

)
.

Therefore, if there is a uniform decay rate E as in (3), it must satisfy

T |B|
(

1− ε2N |B|2

|Ω|(2πθw)N/2

)+(
min

(
1,

(R− ε)
ε(t+ T )

))N
≤ |B|2E(t) .

Here ε only has to satisfy 0 < ε < R. If one lets ε → 0+, this contradicts the
existence of a profile E in (3) such that E(t)→ 0 as t→ +∞.

The negative result in Proposition 1 could have been easily anticipated: as ε→ 0,
our choice of F in converges to |B|2δx=0δv=0 in the weak topology of measures. Then
particles distributed under δx=0δv=0 do not move, hence cannot reach the boundary
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and therefore cannot be thermalized. Thus, in some sense, the problem of finding
a decay rate as in (3) is trivial if stated in this way.

Before going further, let us comment on the kind of inequality considered in
Proposition 1. In order to measure the speed of approach to equilibrium for the
problem (1), it might be more natural to consider a pointwise in time inequality of
the type∥∥∥∥F (t, ·, ·)−

M(1,0,θw)

|Ω|

∫∫
Ω×RN

F indxdv

∥∥∥∥
L1(Ω×RN )

≤ E(t)‖F in‖L1(RN×RN ) (5)

instead of (3). Observe that the l.h.s. of (3) is the time-average of the l.h.s. of
(5), so that (5) is a stronger statement than (3) — as a matter of fact, (5) entails
(3) with E(t) changed into TE(t). Therefore, negative results obtained on time-
averaged estimates like (3) are stronger than their analogues for the corresponding
pointwise estimate similar to (5). This is why we sought to confirm numerically
pointwise in time bounds like (5) in our previous paper [10], and not time-averaged
estimates as in the work of Arkeryd-Nouri [1]. Throughout the present section,
we discuss negative results on the speed of approach to equilibrium and therefore
consider time-averaged decay estimates.

A slightly less trivial issue is to investigate the existence of such a decay rate under
the additional assumption ruling out the possibility of a complete concentration as
above. This could be done by controlling not only the L1 norm of the initial data,
but (for instance) its entropy, or relative entropy with respect to the final state. For
instance, one could look instead at a bound of the form∥∥∥∥F (t+ ·, ·, ·)−

M(1,0,θw)

|Ω|

∫∫
Ω×RN

F indxdv

∥∥∥∥
L1([0,T ]×Ω×RN )

≤ E(t)

∫∫
Ω×RN

F in(x, v)| lnF in(x, v)|dxdv .
(6)

Proposition 2. If there is a time decay rate E such that the solution of (1) satisfies
(6), then it must satisfy

E(t) ≥ C

ln t
as t→ +∞ .

Proof. For the same initial data as before∫∫
F in(x, v)| lnF in(x, v)|dxdv =

∫∫
1

ε2N
1εB(x)1εB(v) ln

(
1

ε2N

)
dxdv

= 2N |B|2| ln ε| .

Proceeding as before to obtain a lower bound for the l.h.s. of (6), one arrives at
the inequality

T |B|
(

1− ε2N |B|2

|Ω|(2πθw)N/2

)+(
min

(
1,

(R− ε)
ε(t+ T )

))N
≤ 2N |B|2| ln ε|E(t) .

Choosing ε0 > 0 small enough, this inequality takes the form

C

(
min

(
1,

1

εt

))N
≤ | ln ε|E(t)
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for all t > T and all ε ∈ (0, ε0). Picking then ε = 1/t with t � 1 so that in
particular t > max(T, 1/ε0) leads to

E(t) ≥ C

ln t
as t→ +∞ .

The constraint on the decay rate E obtained in Proposition 2 remains the same
if one replaces the r.h.s. in the bound (6) with either

E(t)

∫∫
Ω×RN

F in(x, v)(1 + |v|2 + | lnF in(x, v)|)dxdv

or

E(t)

∫∫
Ω×RN

(
F in(x, v) ln

(
F in

ρ̄M(1,0,θw)

)
− F in + ρ̄M(1,0,θw)

)
(x, v)dxdv ,

where

ρ̄ =
1

|Ω|

∫∫
Ω×RN

F indxdv .

Indeed, compared to the r.h.s. in the bound (6), both these quantities involve in
addition the total energy integral∫∫

Ω×RN

|v|2F in(x, v)dxdv .

Since the inequality (6) is tested with velocity distribution functions concentrated
near v = 0, this additional term is negligible and its presence does not change the
final result.

Of course, prescribing an entropy bound is not the only possibility for avoiding
concentrations in the initial data F in. For instance, one could ask for a control of
F in in some Lp-norm with 1 < p ≤ ∞. In other words, one could investigate the
possibility of an inequality of the form∥∥∥∥F (t+ ·, ·, ·)−

M(1,0,θw)

|Ω|

∫∫
Ω×RN

F indxdv

∥∥∥∥
L1([0,T ]×Ω×RN )

≤ E(t)‖F in‖Lp(Ω×RN ) .

(7)

Proposition 3. If there is a time decay rate E such that the solution of (1) satisfies
(7), then it must satisfy

E(t) ≥ C

tN min(1,2/p′)
as t→ +∞ .

Proof. With the same initial data as before

‖F in‖Lp(Ω×RN ) =
|B|2/p

ε2N/p′
,

with p′ = p
p−1 < ∞ the dual exponent of p, so that, estimating the l.h.s. by the

same argument as before, one arrives at the inequality

T |B|
(

1− ε2N |B|2

|Ω|(2πθw)N/2

)+(
min

(
1,

(R− ε)
ε(t+ T )

))N
≤ |B|

2/p

ε2N/p′
E(t) .
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Assume that p ≥ 2. Since the growth of the l.h.s. in 1/ε is smaller than that of the
r.h.s., there is no point in letting ε→ 0. One therefore chooses ε > 0 small enough
but fixed, so that ε < R/2 and ε2N |B|2 < 1

2 |Ω|(2πθw)N/2, so that

T

2
|B|
(

min

(
1,

R

2ε(t+ T )

))N
≤ |B|

2/p

ε2N/p′
E(t) .

In that case, one sees that there exists C = C(T,R, ε) > 0 such that

E(t) ≥ C

tN
as t� 1 .

If 1 < p < 2, by picking ε0 > 0 small enough, the inequality above takes the form

C

(
min

(
1,

1

εt

))N
≤ |B|

2/p

ε2N/p′
E(t) ,

for all t > 0 and all ε ∈ (0, ε0). Picking ε = 1/t with t � 1 so that in particular
t > max(T, 1/ε0), one concludes from this last estimate that

E(t) ≥ C

t2N/p′
as t→ +∞ .

At this point, it is worth comparing the result in Proposition 3 for the collisionless
gas driven to equilibrium by the boundary, and the following important result,
obtained by Ukai, Point and Ghidouche [11], for the Boltzmann equation linearized
at a uniform Maxwellian equilibrium.

Consider the Boltzmann equation linearized at the uniform Maxwellian state
M =M(1,0,1), assuming hard sphere collisions, in the case where the spatial domain

is the periodic box with unit side T3. In other words, consider the Cauchy problem{
(∂t + v · ∇x)g + LMg = 0 , (t, x, v) ∈ R∗+ ×T3 ×R3 ,

g
∣∣
t=0

= gin
(8)

The linearized collision operator is given by

LMφ(v) :=

∫∫
R3×S2

(φ(v′) + φ(v′∗)− φ(v)− φ(v∗))|(v − v∗) · ω|M(v∗)dv∗dω

with {
v′ = v − (v − v∗) · ωω
v′∗ = v∗ + (v − v∗) · ωω

where ω runs through the unit sphere S2. It is understood that the notation
LMφ(t, x, v) designates (LMφ(t, x, ·))(v). Define

Πgin = 〈gin〉+ 〈vgin〉 · v + 〈( 1
3 |v|

2 − 1)gin〉 12 (|v|2 − 3)

with the notation

〈φ〉 =

∫
R3

φ(v)M(v)dv .

Theorem 3.1. [11] There exist γ∗ > 0, and, for each γ ∈]0, γ∗[, a positive constant
Cγ such that, for each gin ∈ L2(T3 ×R3;Mdvdx), the solution g of (8) satisfies,
for each t ≥ 0, the inequality∥∥∥∥g(t, ·, ·)−

∫
T3

Πgindx

∥∥∥∥
L2(T3×R3;Mdvdx)

≤ Cγe−γt‖gin‖L2(T3×R3;Mdvdx) .
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This result expresses that there is a spectral gap for the linearized Boltzmann
(unbounded) operator

Lg(x, v) = v · ∇xg(x, v) + LMg(x, v)

on L2(T3 ×R3;Mdvdx) with domain

D(L) = {φ ∈ L2(T3×R3;Mdvdx) | v ·∇xφ and (1+ |v|)φ ∈ L2(T3×R3;Mdvdx)} .

In other words, the spectrum of L is included in a domain of the form

spec(L) ⊂ {0} ∪ {z ∈ C |Re(z) ≥ θ}

for some θ > 0 (the spectral gap). The eigenvalue 0 corresponds to the five-
dimensional nullspace of L, given by

KerL = {a+ b · v + c 1
2 (|v|2 − 3) | a, c ∈ R and b ∈ R3} .

One reason explaining the spectral gap as above is the fact that LM is an (un-
bounded) Fredholm operator in the v variable, of the form

LMφ(v) = ν(|v|)φ(v)−Kφ

where ν(|v|) is a multiplication operator by the collision frequency satisfying the
inequality ν∗(1 + |v|) ≤ ν(|v|) ≤ ν∗(1 + |v|) for some positive constants ν∗ and ν∗.

Proposition 3 for p = 2 rules out the possibility of a similar spectral gap property
for the problem (1).

Indeed, assume for simplicity that θw = 1 in the problem (1). Then by the
Cauchy-Schwarz inequality

|Ω|1/2
∥∥∥∥F (t, ·, ·)

M
− 1

|Ω|

∫∫
Ω×R3

F indxdv

∥∥∥∥
L2(Ω×R3;Mdvdx)

≥
∥∥∥∥F (t, ·, ·)− M

|Ω|

∫∫
Ω×R3

F indxdv

∥∥∥∥L1(Ω×R3;dvdx)

so that a spectral gap inequality of the form∥∥∥∥F (t, ·, ·)
M

− 1

|Ω|

∫∫
Ω×R3

F indxdv

∥∥∥∥
L2(Ω×R3;Mdvdx)

≤ Cγe−γt
∥∥∥∥F inM

∥∥∥∥
L2(Ω×R3;Mdvdx)

(9)

would entail∥∥∥∥F (t+ ·, ·, ·)− M

|Ω|

∫∫
Ω×R3

F indxdv

∥∥∥∥
L1([0,T ]×Ω×R3;dvdxds)

≤ T |Ω|1/2Cγe−γt
∥∥∥∥F inM

∥∥∥∥L2(Ω×R3;Mdvdx) .

Now, for

F in(x, v) =
1

ε6
1εB(x)1εB(v) ,

one has, assuming that 0 < ε < 1,∥∥∥∥F inM
∥∥∥∥
L2(Ω×R3;Mdvdx)

≤ ((2π)3e)1/4
∥∥F in∥∥

L2(Ω×R3;dvdx)
.
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In other words, the existence of a spectral gap for the problem (1) in Ω×R3 —
i.e. the inequality (9) would entail the inequality∥∥∥∥F (t+ ·, ·, ·)−

M(1,0,θw)

|Ω|

∫∫
Ω×R3

F indxdv

∥∥∥∥
L1([0,T ]×Ω×R3;dvdxds)

≤ T |Ω|1/2((2π)3e)1/4Cγe
−γt ∥∥F in∥∥

L2(Ω×R3;dvdx)
,

which stands in contradiction with Proposition 3.

4. Algebraic decay. After the negative results obtained in the previous section,
we now consider the problem of establishing decay estimates compatible with the
results of section 3.

We shall do so on a special class of boundary value problems, satisfying the
following assumptions:

(a) the spatial domain Ω is a ball of the Euclidian space R3;
(b) the distribution function of the collisionless gas at t = 0 is a radial function of
both the space and velocity variables;
(c) the boundary condition is a diffuse reflection (complete accommodation), with
a constant boundary temperature (no temperature gradient at the boundary of the
vessel.)

None of these assumptions excludes the mechanism producing the negative results
in section 3. Indeed, all these results are based on the choice of an initial distribution
function that is concentrated, in the velocity variable, near v = 0, and in the space
variable, near a point that is away from the boundary. This is obviously possible
with the symmetries above, by choosing the initial data concentrated, in the space
variable, near the center of the ball, and in the velocity variable, near v = 0 as
in section 3. Particles so distributed at time t = 0 will not reach the boundary of
the spatial domain until after very late, and, meanwhile, the exact nature of the
boundary condition is immaterial for such particles.

Therefore, we set the spatial domain to be Ω = B(0, 1), the unit ball of R3. The
temperature on ∂Ω is set to be θw = 1. Consider the initial boundary value problem

(∂t + v · ∇x)f = 0 , (t, x, v) ∈ R+ × Ω×R3 ,

f(t, x, v) =
〈f〉+
〈M〉+

M(v) , v · nx < 0 , x ∈ ∂Ω ,

f
∣∣
t=0

= f in(|x|, |v|) ,

(10)

with the notation

〈φ〉+ =

∫
v·nx>0

φ(v)v · nxdv ,

and we recall the notation M = M(1,0,1) for the Maxwellian distribution with
density 1, zero bulk velocity and temperature 1.

The main result in this section is the following.

Theorem 4.1. Assume that 0 ≤ f in(x, v) ≤ CM(v) a.e. in (x, v) ∈ Ω×R3. Then
the solution of (10) satisfies∫∫

Ω×R3

∣∣∣∣f(t, x, v)

M(v)
− 1
|Ω|

∫∫
Ω×R3

f in(|x|, |v|)dxdv
∣∣∣∣pM(v)dvdx = O

(
1

t3

)
+O

(
1

tp

)
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so that∥∥∥∥f(t, ·, ·)
M

− 1
|Ω|

∫∫
Ω×R3

f in(|x|, |v|)dxdv
∥∥∥∥
Lp(Ω×R3;Mdvdx)

= O

(
1

tmin(1,3/p)

)
for all 1 ≤ p <∞.

The reader might want to compare the upper bound in this theorem with the
lower bound in Proposition 3: this is done by taking p =∞ in the estimate (7) and
in Proposition 3, and p = 1 in the theorem above. The difference in the exponents
observed suggests that one of these results at least is not sharp. The numerical
investigations in [10] suggests that it is the lower estimate in Proposition 3 that is
sharp, while the upper bound in the theorem above is not.

Our main task in the proof of this theorem is to use the symmetries in the problem
(10) to reduce it to a renewal integral equation for a scalar unknown quantity, and
to use classical results for such equations.

The role of symmetries in this problem is summarized in the following statement.

Lemma 4.2. If f is the solution of the initial boundary value problem (10), its
outgoing flux at the boundary

µ :=

∫
v·nx>0

f(t, x, v)v · nxdv

is independent of the position variable x as x runs through ∂Ω, and a function of
t ≥ 0 only.

Proof. If R∈O3(R) is any orthogonal matrix, the function fR(t, x, v) :=f(t, Rx,Rv)
obviously satisfies fR

∣∣
t=0

= f
∣∣
t=0

, and 〈fR〉+(t, x) = 〈f〉+(t, Rx), while

(∂t + v · ∇x)fR(t, x, v) = ∂tf(t, Rx,Rv) + v · (RT∇xf)(t, Rx,Rv)

= ∂tf(t, Rx,Rv) +Rv · ∇xf(t, Rx,Rv) = 0 .

By uniqueness of the solution of (10), we conclude that fR = f for each R ∈ O3(R).
Thus

〈f〉+(t, x) = 〈fR〉+(t, x) = 〈f〉+(t, Rx)

for each (t, x) ∈ R+ × ∂Ω and R ∈ O3(R): hence µ := 〈f〉+ is independent of x as
x runs through ∂Ω.

Proof of Theorem 4.1. With Lemma 4.2, we easily arrive at an integral equation

satisfied by µ. Pick x ∈ ∂Ω, and set θ = (̂nx, v); the backward exit time

τx,v := inf{t > 0 |x− tv /∈ Ω}

is given by the explicit formula

τx,v =
2 cos θ

|v|
,

as can be seen on Figure 1.
By the method of characteristics, for each x ∈ ∂Ω and v ∈ R3 such that v·nx > 0,

one has

f(t, x, v) = 1t>τx,v
M(v)

〈M〉+
µ(t− τx,v) + 1t<τx,vf

in(|x− tv|, |v|) .
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!v

nx
x O

"

x,v# v

Figure 1. The exit time for a spherical domain

Hence

µ(t) =

∫
v·nx>0

f(t, x, v)v · nxdv

=
1

〈M〉+

∫
v·nx>0

µ(t− τx,v)1t>τx,vM(v)v · nxdv

+

∫
v·nx>0

f in(|x− tv|, |v|)1t<τx,vv · nxdv

Introducing spherical coordinates in v, with nx being the polar direction and θ the
colatitude, we see on Figure 1 that, for each x ∈ ∂Ω, one has τx,v|v| = 2 cos θ, so
that ∫

v·nx>0

µ(t− τx,v)1t>τx,vM(v)v · nxdv

= 2π

∫ ∞
0

∫ π/2

0

µ

(
t− 2 cos θ

|v|

)
1t|v|>2 cos θM(|v|)|v| cos θ|v|2 sin θdθd|v| ,

abusing the notation M(|v|) to designate the radial function v 7→M(v).
Substituting y = cos θ, this integral is expressed as∫ ∞

0

∫ 1

0

µ

(
t− 2y

|v|

)
1t|v|>2yM(|v|)|v|3ydyd|v|

= 1
4

∫ ∞
0

∫ 2/|v|

0

µ (t− τ)1t>τM(|v|)|v|5τdτd|v|

= 1
4

∫ ∞
0

∫ t

0

µ (t− τ)1τ<2/|v|M(|v|)|v|5τdτd|v|

= 1
4

∫ t

0

µ (t− τ)

(∫ 2/τ

0

M(|v|)|v|5d|v|

)
τdτ .
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We henceforth define

K(τ) :=
πτ

2〈M〉+

∫ 2/τ

0

M(|v|)|v|5d|v| .

The function K is continuous on R∗+, satisfies K(τ) ≥ 0 for each τ ≥ 0, and

K(τ)→ 0 as τ → 0+ , K(τ) ∼ 8

3τ5
as τ → +∞ .

Therefore µ satisfies

µ(t) =

∫ t

0

K(τ)µ(t− τ)dτ + S(t) (11)

where the source term is

S(t) :=

∫
v·nx>0

f in(|x− tv|, |v|)1t<τx,vv · nxdv .

This is a renewal equation, to which we shall apply the results of [8].
Next we consider the source term. Define

Φ(|v|) := supessx∈Ωf
in(|x|, |v|) ;

assuming that 0 ≤ f in ∈ L∞(Ω×R3) implies that Φ ∈ L∞(R+). Then,

S(t) ≤
∫
v·nx>0

Φ(|v|)1t<τx,vv · nxdv

= 2π

∫ ∞
0

Φ(|v|)|v|3
(∫ π/2

0

1t|v|<2 cos θ cos θ sin θdθ

)
d|v|

= 2π

∫ ∞
0

Φ(|v|)|v|3
(∫ 1

0

1t|v|<2yydy

)
d|v|

= π

∫ ∞
0

Φ(|v|)|v|3(1− 1
4 t

2|v|2)+d|v|

≤ π‖Φ‖L∞
∫ 2/t

0

|v|3d|v| = 4π‖Φ‖L∞
t4

.

Apply Theorem 4 of [8]: with n = 3, one has∫ ∞
0

tmK(t)dt < +∞ for m = 0, 1, 2, 3

while

S(t) = o

(
1

t

)
,

∫ ∞
t

S(τ)dτ = o

(
1

t

)
as t→ +∞. Then

µ(t)→ µ∞ =

∫ ∞
0

S(τ)dτ∫ ∞
0

τK(τ)dτ

as t→ +∞, and

µ(t)− µ∞ = o

(
1

t

)
.
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Now let g := f/M , where f is the solution of (10); g satisfies
(∂t + v · ∇x)g = 0 , (t, x, v) ∈ R+ × Ω×R3 ,

g(t, x, v) =
√

2πµ(t) , v · nx < 0 , x ∈ ∂Ω ,

g
∣∣
t=0

= f in(|x|, |v|)/M(v) .

(12)

The function g is given by

g(t, x, v) =
√

2πµ(t− τx,v)1t>τx,v +
f in(|x|, |v|)
M(v)

1t<τx,v ,

so that

g(t, x, v)−
√

2πµ∞ =
√

2π (µ(t− τx,v)− µ∞)1t>τx,v

+

(
f in(|x|, |v|)
M(v)

−
√

2πµ∞

)
1t<τx,v = I + II .

Now τx,v ≤ 2/|v|, so that∫
R3

1t<τx,vM(v)dv ≤
∫
|v|≤2/t

M(v)dv ∼ 23|B3|
(2π)3/2

1

t3
.

Hence ∫
R3

|II|pM(v)dv = O

(
1

t3

)
. (13)

On the other hand∫
R3

|I|pM(v)dv ≤
∫
R3

C1t>τx,v
(t− τx,v + 1)p

M(v)dv

≤
∫
|v|<ε

C

((t− 2
|v| )+ + 1)p

M(v)dv

+

∫
|v|≥ε

C

((t− 2
|v| )+ + 1)p

M(v)dv

≤C
∫
|v|<ε

M(v)dv +
C

((t− 2
ε )+ + 1)p

∫
|v|≥ε

M(v)dv

≤C ′ε3 +
C ′

( t2 + 1)p

for some other constant C ′ > 0, provided that t ≥ 4/ε. Choosing ε = 4/t < 1, we
arrive at ∫

R3

|I|pM(v)dv ≤ 43C ′

t3
+
C ′

tp
. (14)

Putting together (13)-(14) entails the first estimate in the theorem. The second
follows from the first and interpolation with the maximum principle for the solution
g of (12).

Finally, the fact that

√
2πµ∞ = 1

|Ω|

∫∫
Ω×R3

f in(|x|, |v|)dxdv

follows from the conservation of mass for the solution of (10).
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Notice that the decay requirements on the renewal kernel in Feller’s Theorem 4 [8]
forbid extending our proof to space dimensions less than 3. In the one-dimensional
case, Yu obtained in [15] an algebraic rate of convergence for the outgoing flux
(specifically, of order t−1/10), by probabilistic arguments significantly more involved
than the above proof.

5. The monokinetic case: exponential decay. The discussion in section 3
shows the existence of too many slow particles is the reason for the slow return to
equilibrium in the case of a collisionless gas in a container with constant wall tem-
perature. In the present section, we confirm this effect by proving that monokinetic
populations of particles in the same conditions converge to equilibrium exponen-
tially fast.

Radiative transfer provides a natural example of a monokinetic transport process.
Consider the following (academic) problem: at time 0, a source emits radiation in
an empty container surrounded by infinitely opaque material. Photons propagate
at the speed of light, and are instantaneously thermalized on the wall. Denoting
I ≡ I(t, x, ω, ν) the radiative intensity at time t, position x, in the direction ω and
with frequency ν, one arrives at the following initial-boundary value problem:

1
c∂tI + ω · ∇xI = 0 , x ∈ Ω , |ω| = 1 , ν > 0 ,

I(t, x, ω, ν) = Bν(θI(t, x)) , x ∈ ∂Ω , ω · nx < 0 , ν > 0 ,

I
∣∣
t=0

= Iin .

(15)

Here c > 0 is the speed of light in vacuum, Ω is a bounded open set in R3 with C1

boundary, nx is the outward unit normal at x ∈ ∂Ω. The notation Bν(θ) designates
Planck’s function for the radiative intensity emitted by a black body at temperature
θ, i.e.

Bν(θ) =
2hν3

c2
1

ehν/kθ − 1
,

where h and k are respectively the Planck and the Boltzmann constants. The
temperature θI is defined by∫∫

S2×R+

I(t, x, ω, ν)(ω · nx)+dωdν

=

∫∫
S2×R+

Bν(θI(t, x))(ω · nx)+dωdν =: σθI(t, x)4

where σ is the Stefan-Boltzmann constant

σ :=
2πk4

c2h3

∫ ∞
0

x3dx

ex − 1
=

2π5k4

15c2h3
.

By definition of θI , the net flux of energy at each point of the wall is∫∫
S2×R+

I(t, x, ω, ν)ω · nxdωdν = 0 ,

so that the total energy in the container is conserved: for each t ≥ 0, one has∫∫∫
Ω×S2×R+

I(t, x, ω, ν)dxdωdν =

∫∫∫
Ω×S2×R+

Iin(x, ω, ν)dxdωdν .
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Therefore, one expects that, as t → +∞, the radiation inside the container ther-
malizes so that

I(t, x, ω, ν)→ Bν(θ∞) as t→ +∞ ,

with

4σ|Ω|θ4
∞ := 4π|Ω|

∫ ∞
0

Bν(θ∞)dν =

∫∫∫
Ω×S2×R+

Iin(x, ω, ν)dxdωdν .

In this section, we seek the rate of convergence to equilibrium for the problem above.

Theorem 5.1. Assume that Iin is smooth and satisfies supp(Iin) ⊂ Ω×R+ together
with the bound 0 ≤ Iin(x, ν) ≤ Bν(Θ) with Θ > 0, for all x ∈ Ω and ν ≥ 0. Then,
the solution I of the initial boundary value problem (15) satisfies

I(t, x, ω, ν)−Bν(θ∞) = O(e−α
′t)

as t→ +∞, uniformly on Ω×S1 ×R+, for each α′ < α, where θ∞ ≥ 0 is given by

θ4
∞ :=

π

σ|Ω|

∫∫
Ω×S2

Iin(|x|2, ν)dxdν

while α is

α = inf

{
−<(z) | z ∈ C∗ such that 1

2

∫ 2

0

e−szsds = 1

}
.

Proof. The problem is simplified by considering the radiative intensity integrated
over frequencies, the grey intensity u defined as

u(t, x, ω) :=

∫ ∞
0

I(t, x, ω, ν)dν .

The formula defining θI reads∫
S2

u(t, x, ω)(ω · nx)+dω = σθI(t, x)4

while ∫ ∞
0

Bν(θI)dν =
σ

π
θ4
I .

Therefore, choosing for simplicity units of time and space so that c = 1, the grey
intensity u satisfies

∂tu+ ω · ∇xu = 0 , x ∈ Ω , |ω| = 1 ,

u(t, x, ω) = 1
π

∫
S2

u(t, x, ω′)(ω′ · nx)+dω
′ x ∈ ∂Ω , ω · nx < 0 ,

u
∣∣
t=0

= uin :=

∫ ∞
0

Iindν .

(16)

Henceforth, we assume the same geometric setting as in section 4: Ω = B(0, 1) ⊂
R3, and Iin is radial in x and isotropic, meaning that Iin ≡ Iin(|x|2, ν). In that
case, reasoning as in Lemma 4.2 shows that

f(t) := 1
π

∫
S2

u(t, x, ω′)(ω′ · nx)+dω
′

is independent of the position x ∈ ∂Ω.
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Proceeding as in section 4, we derive a renewal integral equation for f . Indeed,
integrating the transport equation in (16) by the method of characteristics, we see
that

u(t, x, ω) = 1t≤τx,ωu
in(|x− tω|2) + 1t>τx,ωf(t− τx,ω) (17)

whenever x ∈ ∂Ω with ω · nx > 0, so that

f(t) = 1
π

∫
S2

u(t, x, ω)(ω · nx)+dω

= 1
π

∫
S2

1t≤τx,ωu
in(|x− tω|2)(ω · nx)+dω

+ 1
π

∫
S2

1t>τx,ωf(t− τx,ω)(ω · nx)+dω

=S(t) +

∫ t

0

K(s)f(t− s)ds .

Here ∫ t

0

K(s)f(t− s)ds = 1
π

∫
S2

1t>τx,ωf(t− τx,ω)(ω · nx)+dω

= 1
π

∫ π/2

0

1t>2 cos θf(t− 2 cos θ) cos θ · 2π sin θdθ

=

∫ 2

0

1t>sf(t− s) 1
2sds

so that
K(s) = 1

2s1s<2 ,

while

S(t) := 1
π

∫
S2

1t≤τx,ωu
in(|x− tω|2)(ω · nx)+dω

= 1
π

∫
S2

1t≤τx,ωu
in(1 + t2 − 2tx · ω)(ω · nx)+dω

= 1
π

∫ π/2

0

1t≤2 cos θu
in(1 + t2 − 2t cos θ) cos θ · 2π sin θdθ

= 1
2

∫ 2

0

1t≤su
in(1 + t2 − ts)sds

=

∫ +∞

0

uin(1− tτ)K(t+ τ)dτ .

Since uin ∈ L∞(Ω), and K is bounded with support in [0, 2], so is S and one has∫ ∞
0

tmK(t)dt < +∞ and S(t) = O(t−m) as t→ +∞ for each m ≥ 1 .

Applying Theorem 4 of [8] already implies that

f(t)→ f∞ :=

∫ ∞
0

S(t)dt∫ ∞
0

tK(t)dt

as t→ +∞ ,

and that f(t)− f∞ is rapidly decaying as t→ +∞:

|f(t)− f∞| = O(t−m) as t→ +∞ for each m ≥ 1 .
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We improve this estimate and obtain exponential convergence, as follows. Given
φ ∈ L2(R+), we denote its Laplace transform by

φ̃(z) :=

∫ ∞
0

e−ztφ(t)dt .

We recall that the Laplace transform φ 7→ φ̃ is an isomorphism from L2(R+) to the
Hardy space H2(Π0), where Πa := {z ∈ C | <(z) > a}. We recall that an element
of H2(Πa) is a holomorphic function ψ ≡ ψ(z) on the half-plane Πa that satisfies

sup
x>a

∫
R

|ψ(x+ iy)|2dy < +∞ .

Applying the Laplace transform to both sides of the renewal equation

f(t) = S(t) +

∫ t

0

K(s)f(t− s)ds , t ≥ 0 (18)

satisfied by f , we see that

f̃(z)(1− K̃(z)) = S̃(z) , <(z) > 0 . (19)

Since K ∈ L∞(R) with support in [0, 2], the Laplace transform of K is entire
holomorphic; it is given by

K̃(z) =
1− e−2z(1 + 2z)

2z2
, z 6= 0 , K̃(0) = 1 .

Since K̃ ′(0) = − 4
3 , the only zero of 1− K̃ near z = 0 is 0. Besides

|K̃(z)| =
∫ ∞

0

e−t<(z)K(t)dt < 1 whenever <(z) > 0 ,

since K is a probability distribution on R+. Furthermore

<(K̃(iy)) =

∫ ∞
0

cos(ty)K(t)dt <

∫ ∞
0

K(t)dt = 1

so that z = 0 is the only zero of 1 − K on the imaginary axis. Finally, for each
a ∈ R, one has

|K̃(z)| ≤ 1

2|z|2
(1 + (1 + 2|z|)e−2<(z)) . (20)

In particular |K̃(z)| → 0 as =(z) → +∞ uniformly in <(z) ≥ a. Therefore, there
exists α > 0 such that

1− K̃(z) = 0 and <(z) > −α ⇔ z = 0 .

Hence z 7→ z
1−K̃(z)

is holomorphic on the half-plane Π−α, and one recasts (19) as

zf̃(z) =
zS̃(z)

1− K̃(z)
, <(z) > −α .

Indeed, since S ∈ L∞(R) with support in [0, 2], its Laplace transform is an entire
holomorphic function.

Moreover, assuming that uin ∈ C1
c ((0, 1)), we deduce from the formula

S(t) =

∫ ∞
t

uin(1 + t2 − ts)K(s)ds
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that S ∈ C1(R+), with

S′(t) =

∫ ∞
t

(uin)′(1 + t2 − ts)(2t− s)K(s)ds

so that, for all t ≥ 0, one has

|S′(t)| ≤ 2t‖(uin)′‖L∞
∫ ∞
t

K(s)ds ≤ 4‖(uin)′‖L∞ .

Since S(0) = uin(1) = 0, one has zS̃(z) = S̃′(z); and since S′ is continuous with

compact support on R, its Laplace transform S̃′ ∈ H2(Πa) for each a ∈ R.

In view of (20), for each α′ < α, the function z 7→ (1 − K̃(z))−1 is bounded on
Π−α′ \B(0, α′/2), so that the function

z 7→ zS̃(z)

1− K̃(z)
belongs to H2(Π−α′)

for each α′ < α.
Since ẽatφ = φ̃(z−a), this implies the existence of a function g such that eα

′tg ∈
L2(R+) for each α′ < α and

g̃(z) =
zS̃(z)

1− K̃(z)
, whenever <(z) > −α′ .

Consider the function G defined by

G(t) =

∫ t

0

g(s)ds , t ≥ 0 .

Then G is continuous on R with support in R+, satisfies

0 ≤ |G(t)| ≤ ‖e
α′tg‖L2√

2α′
, t ≥ 0 ,

so that G̃ belongs to H2(Πη) for each η > 0.
Now, for each z ∈ Πη

zG̃(z) =

∫ ∞
0

ze−zt
∫ t

0

g(s)dsdt =

∫ ∞
0

g(s)

∫ ∞
s

ze−ztdtds

=

∫ ∞
0

g(s)e−zsds = g̃(z) =
zS̃(z)

1− K̃(z)
= zf̃(z) .

In other words, G and f are bounded continuous functions on R supported in R+,
whose Laplace transforms coincide on Π0. Therefore

f(t) = G(t) =

∫ t

0

g(s)ds , for each t ≥ 0 ,

and since eα
′tg ∈ L2(R+) for each α′ < α, one conclude that

|f(t)− f∞| =
∫ +∞

t

|g(s)|ds ≤ ‖eα
′tg‖L2

(∫ +∞

t

e−α
′sds

)1/2

=
‖eα′tg‖L2√

2α′
e−α

′t ≤ Cα′e−α
′t

for each t > 0.
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Going back to the original problem (15) or (16), we deduce from the method of
charateristics (17) that

u(t, x, ω) = f(t) , whenever t > diam(Ω) ,

or equivalently, in the frequency dependent case,

I(t, x, ω, ν) = Bν

(
(πσ f(t))1/4

)
, whenever t >

diam(Ω)

c
,

since τx,ω ≤ diam(Ω).

Before concluding, it is worth discussing the role of the monokinetic assumption
in the exponential decay estimate obtained here.

Intrinsically, the integral kernel K(s)ds in the proof of Theorem 5.1 is the image
under ω 7→ τx,ω of the probability measure proportional to (ω ·nx)+dω on S2. Since
0 ≤ τx,ω ≤ 2 = diam(Ω), this kernel K is supported in [0, 2]. Therefore its Laplace
transform is holomorphic entire, and since solving the renewal integral equation is
equivalent to the possibility of inverting 1− K̃, the only constraint is the potential
presence of zeros of 1−K̃; besides, since K has integral 1, the half-plane <(z) ≥ 0 is

zero-free, except for z = 0, and zeros of 1− K̃ cannot accumulate on the imaginary
axis. Hence the solution of the renewal equation is obtained by inverting the Laplace
transform, deforming the contour of integration to be <(z) = −α′ for some α′ > 0.

In the case of the collisionless gas in Theorem 4.1, the integral kernel K(s)ds is
the image under v 7→ τx,v of the probability measure proportional to (v·nx)+M(v)dv
on R3. Because of the low-speed gas molecules, its behavior near s = 0 is the same
as that of the image measure of, say, (v1)+dv on the unit ball B(0, 1) under v 7→ τx,v
— the Maxwellian weight M(v) obviously plays no role near v = 0. Thus, the decay
of K for s→ +∞ only depends on the Jacobian weight |v|N−1 that appears when
integrating radial functions with the Lebesgue measure in RN . This results in only
algebraic decay for K in the limit s → +∞, so that the Laplace transform of K
does not have a holomorphic extension in any half-plane of the form <(z) > −α
with α > 0. Therefore, the same deformation of contour as in the proof of Theorem
5.1 is impossible in that case. In order to be able to push the integration contour
in the Laplace inversion formula to the left of the imaginary axis, K should decay
exponentially fast as s→ +∞. This would be the case if the Jacobian weight |v|N−1

appearing in the integration of radial functions with the Lebesgue measure in space
dimension N could be replaced with e−a/|v| for some a > 0. Thus, the difference
between the speed of approach to equilibrium observed in a collisionless gas with
diffuse reflection of gas molecules on vessel walls kept at constant temperature, and
the spectral gap property for the linear Boltzmann equation on the other hand, can
be measured in terms of the vanishing order of |v|N−1 and e−a/|v| as |v| → 0.

6. Conclusion. We have discussed in this paper the speed of approach to equi-
librium for a collisionless gas enclosed in a vessel whose wall is kept at a uniform
and constant temperature, assuming diffuse reflection on the vessel wall. We pro-
pose lower bounds for this convergence rate, depending on the possibility of initial
distribution functions that are concentrated at low particle speeds. Not only do
these lower bounds exclude exponential decay to equilibrium, they also constrain
the power in any potential algebraic decay rate. On the other hand, assuming
spherical symmetry of the initial velocity distribution function and of the vessel, we
establish an algebraic decay rate by reducing the problem to a renewal equation for
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the flux of outgoing gas particles. All these results are consistent with the asymp-
totic behavior obtained in [10] with numerical simulations. To clarify the role of
low-speed particles, we have studied the case of radiative transfer in the vacuum, in
a container with infinitely opaque boundary, so that the total incoming radiation
flux on the boundary is reemitted as a Planck distribution. We establish exponen-
tial convergence of the radiative intensity to a Planck distribution in the long time
limit, assuming the same spherical symmetries as in the case of a collisionless gas.

There remain several open problems in this direction, such as a) establishing de-
cay rates without any symmetry assumptions, and b) obtaining the optimal decay
rates, even in the spherically symmetric case. Both problems might involve math-
ematical techniques quite different from the ones used here. We hope to return to
these questions in subsequent publications.
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