30 research outputs found

    Tráfico ilegal de aves exóticas

    Get PDF
    Treball presentat a la Facultat de Veterinària de la Universitat Autònoma de Barcelona.Treball presentat a l'assignatura de Deontologia i Veterinària Legal (21223

    Cost-effectiveness of combination therapy umeclidinium/vilanterol versus tiotropium in symptomatic copd spanish patients

    Full text link
    Purpose: Umeclidinium/vilanterol (UMEC/VI) is a novel fixed dose combination of a long-acting muscarinic receptor antagonist (LAMA) and a long-acting beta 2 receptor antagonist (LABA) agent. This analysis evaluated the incremental cost-effectiveness ratio (ICER) of UMEC/VI compared with tiotropium (TIO), from the Spanish National Health System (NHS) perspective. Methods: A previously published linked equations cohort model based on the epidemiological longitudinal study ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points) was used. Patients included were COPD patients with a post-bronchodilator forced expiratory volume in 1 second (FEV1) ≤70% and the presence of respiratory symptoms mea­sured with the modified Medical Research Council dyspnea scale (modified Medical Research Council ≥2). Treatment effect, expressed as change in FEV1 from baseline, was estimated from a 24-week head-to-head phase III clinical trial comparing once-daily UMEC/VI with once-daily TIO and was assumed to last 52 weeks following treatment initiation (maximum duration of UMEC/VI clinical trials). Spanish utility values were derived from a published local observa­tional study. Unitary health care costs (€2015) were obtained from local sources. A 3-year time horizon was selected, and 3% discount was applied to effects and costs. Results were expressed as cost/quality-adjusted life years (QALYs). Univariate and probabilistic sensitivity analysis (PSA) was performed. Results: UMEC/VI produced additional 0.03 QALY and €590 vs TIO, leading to an ICER of €21,475/QALY. According to PSA, the probability of UMEC/VI being cost-effective was 80.3% at a willingness-to-pay of €30,000/QALY. Conclusion: UMEC/VI could be considered as a cost-effective treatment alternative compared with TIO in symptomatic COPD patients from the Spanish NHS perspective

    SARS-CoV-2 S Protein Reduces Cytoprotective Defenses and Promotes Human Endothelial Cell Senescence

    Get PDF
    Premature vascular aging and endothelial cell senescence are major risk factors for cardiovascular diseases and atherothrombotic disturbances, which are main complications of both acute and long COVID-19. The S protein of SARS-CoV2, which acts as the receptor binding protein for the viral infection, is able to induce endothelial cells inflammation and it has been found as an isolated element in the circulation and in human tissues reservoirs months after infection. Here, we investigated whether the S protein is able to directly induce endothelial cell senescence and deciphered some of the mechanisms involved. In primary cultures of human umbilical vein endothelial cells (HUVEC), SARS-CoV-2 S protein enhanced in a concentration-dependent manner the cellular content of senescence and DNA damage response markers (senescence-associated-β galactosidase, γH2AX), as well as growth-arrest effectors (p53, p21, p16). In parallel, the S protein reduced the availability of cytoprotective proteins, such as the anti-aging protein klotho, Nrf2 or heme oxygenase-1, and caused functional harm by impairing ex vivo endothelial-dependent vasorelaxation in murine microvessels. These effects were prevented by the pharmacological inhibition of the NLRP3 inflammasome with MCC950. Furthermore, the supplementation with either recombinant klotho or angiotensin-(1-7), equally protected against the pro-senescence, pro-inflammatory and pro-oxidant action of the S protein. Globally, this study proposes novel mechanisms of disease in the context of COVID-19 and its vascular sequelae and provides pharmacological clues in order to prevent such complications.This work was supported by grants from REACT-EU-Comunidad de Madrid and the European Regional Development Fund (SPACE2-CV-COVID-CM) to CP and OL, Plan Nacional I+D (PID2020-115590RB-100/AEI/https://doi.org/10.13039/501100011033) to CP and CFSF. Fondo de Investigación Sanitaria-FIS Carlos III (PI20/00923) to OL. Plan Nacional I+D (PID2022-137373OB-I00 granted by MICIU/AEI/10.13039/ 501100011033 / FEDER, UE to ISP. Plan Nacional I+D (PID2021-126274OB-I00) to FC. L.S. is the recipient of FPI Universidad Autónoma de Madrid (SFPI / 2020-00053). IV is the recipient of a Sara Borrell postdoctoral grant (CD22/00101). SF was supported by Comunidad de Madrid grants PEJ-2021-TL/BMD-22441.Peer reviewe

    Meta-analysis of the space flight and microgravity response of the Arabidopsis plant transcriptome

    Get PDF
    15 p.-8 fig.-2 tab.Spaceflight presents a multifaceted environment for plants, combining the effects on growth of many stressors and factors including altered gravity, the influence of experiment hardware, and increased radiation exposure. To help understand the plant response to this complex suite of factors this study compared transcriptomic analysis of 15 Arabidopsis thaliana spaceflight experiments deposited in the National Aeronautics and Space Administration’s GeneLab data repository. These data were reanalyzed for genes showing significant differential expression in spaceflight versus ground controls using a single common computational pipeline for either the microarray or the RNA-seq datasets. Such a standardized approach to analysis should greatly increase the robustness of comparisons made between datasets. This analysis was coupled with extensive cross-referencing to a curated matrix of metadata associated with these experiments. Our study reveals that factors such as analysis type (i.e., microarray versus RNA-seq) or environmental and hardware conditions have important confounding effects on comparisons seeking to define plant reactions to spaceflight. The metadata matrix allows selection of studies with high similarity scores, i.e., that share multiple elements of experimental design, such as plant age or flight hardware. Comparisons between these studies then helps reduce the complexity in drawing conclusions arising from comparisons made between experiments with very different designs.This work was coordinated through the GeneLab Plant Analysis Working Group and was supported by NASA grants 80NSSC19K0126, 80NSSC18K0132 and 80NSSC21K0577 to S.G. and R.B., through NASA 80NSSC19K1481 to S.W., NNX15AG55G to C.W., and NNX15AG56G to L.D. and N.L., from the Spanish Agencia Estatal de Investigación grant RTI2018-099309-B-I00 and ESA 1340112 4000131202/20/NL/PG/pt to R.H. Contributions from P.J. and P.G. were partially supported by funds from the Oregon State University, NSF awards 1127112 and 1340112 and the United States Department of Agriculture, Agriculture Research Service. The Qlik software used in this work is provided under a free-to-use educational license from Qlik Technologies Inc. GeneLab datasets were obtained from https://genelab-data.ndc.nasa.gov/genelab/projects/, maintained by NASA GeneLab, NASA Ames Research Center, Moffett Field, CA 94035.Peer reviewe

    Space omics research in Europe: contributions, geographical distribution and ESA member state funding schemes

    Get PDF
    18 p.-3 fig.-1 graph. abst.The European research community, via European Space Agency (ESA) spaceflight opportunities, has significantly contributed towards our current understanding of spaceflight biology. Recent molecular biology experiments include “omic” analysis, which provides a holistic and systems level understanding of the mechanisms underlying phenotypic adaptation. Despite vast interest in, and the immense quantity of biological information gained from space omics research, the knowledge of ESA-related space omics works as a collective remains poorly defined due to the recent exponential application of omics approaches in space and the limited search capabilities of pre-existing records. Thus, a review of such contributions is necessary to clarify and promote the development of space omics among ESA and ESA state members. To address this gap, in this review we: i) identified and summarised omics works led by European researchers, ii) geographically described these omics works, and iii) highlighted potential caveats in complex funding scenarios among ESA member states.All listed authors are members of the ESA Space Omics Topical Team, funded by the ESA grant/contract 4000131202/20/NL/PG/pt “Space Omics: Towards an integrated ESA/NASA –omics database for spaceflight and ground facilities experiments” awarded to RH, which was the main funding source for this work. Individual authors also acknowledge support from: the Medical Research Council part of a Skills Development Fellowship [grant number MR/T026014/1] awarded to CSD; the Spanish CAM TALENTO program project 2020-5A_BIO-19724 to MAFR; the Spanish Plan Estatal de Investigación Científica y Desarrollo Tecnológico Grant RTI2018-099309-B-I00 to FJM, the Swedish Research Council VR grant 2020-04864 to SG and the French Centre National d'Etudes Spatiales grant DAR 2020-4800001004, 2021-4800001117 to ECD. This research was also funded in part by the Wellcome Trust [110182/Z/15/Z] to KS.Peer reviewe

    Comparison of circulating tumor DNA assays for Molecular Residual Disease detection in early-stage triple negative breast cancer

    Get PDF
    Purpose: Detection of circulating tumor DNA (ctDNA) in patients who have completed treatment for early-stage breast cancer is associated with a high risk of relapse, yet the optimal assay for ctDNA detection is unknown. Experimental design: The cTRAK-TN clinical trial prospectively used tumor informed digital PCR (dPCR) assays for ctDNA molecular residual disease (MRD) detection in early-stage triple negative breast cancer. We compared tumor informed dPCR assays with tumor informed personalized multi-mutation sequencing assays in 141 patients from cTRAK-TN. Results: MRD was first detected by personalized sequencing in 47.9% of patients, 0% first detected by dPCR, and 52.1% with both assays simultaneously (p<0.001, Fisher’s exact test). The median lead time from ctDNA detection to relapse was 6.1 months with personalized sequencing and 3.9 months with dPCR (p=0.004, mixed effects Cox model). Detection of MRD at the first timepoint was associated with a shorter time to relapse compared with detection at subsequent timepoints (median lead time 4.2 vs 7.1 months, p=0.02). Conclusions: Personalized multi-mutation sequencing assays have potential clinically important improvements in clinical outcome in the early detection of MRD

    Space omics research in Europe: Contributions, geographical distribution and ESA member state funding schemes

    Get PDF
    The European research community, via European Space Agency (ESA) spaceflight opportunities, has significantly contributed toward our current understanding of spaceflight biology. Recent molecular biology experiments include “omic” analysis, which provides a holistic and systems level understanding of the mechanisms underlying phenotypic adaptation. Despite vast interest in, and the immense quantity of biological information gained from space omics research, the knowledge of ESA-related space omics works as a collective remains poorly defined due to the recent exponential application of omics approaches in space and the limited search capabilities of pre-existing records. Thus, a review of such contributions is necessary to clarify and promote the development of space omics among ESA and ESA state members. To address this gap, in this review, we i) identified and summarized omics works led by European researchers, ii) geographically described these omics works, and iii) highlighted potential caveats in complex funding scenarios among ESA member states

    NASA GeneLab RNA-seq consensus pipeline: Standardized processing of short-read RNA-seq data

    Get PDF
    With the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from spaceflight-associated experiments. The pipeline includes quality control, read trimming, mapping, and gene quantification steps, culminating in the detection of differentially expressed genes. This data analysis pipeline and the results of its execution using data submitted to GeneLab are now all publicly available through the GeneLab database. We present here the full details and rationale for the construction of this pipeline in order to promote transparency, reproducibility, and reusability of pipeline data; to provide a template for data processing of future spaceflight-relevant datasets; and to encourage cross-analysis of data from other databases with the data available in GeneLab

    Effects of microgravity and partial gravity and the influence of photostimulation on plant adaptation to spaceflight

    No full text
    158 p.-37 fig.-7 tab.[EN]exploration will need the use of plants as part of bioregenerative life support systems to provide oxygen and nutrients, and also as a part of the waste recycling system. How the spatial environment affects plant growth and development is still under study. Exposure to microgravity has been reported to affect the functions of plants at different levels, such as cell growth and proliferation, or ribosome biogenesis, or the alterations found in oxidative state, or heat shock proteins expression. A considerable reprogramming of gene expression takes place in response to the environmental change. The Seedling Growth (SG) space experiment was performed in three different launches, with different Arabidopsis thaliana ecotypes and genotypes. They were exposed to different gravity levels for 2 (SG1-2) or 6 days (SG2-3) and different light conditions, including blue and red light lateral illumination to analyze the effects of these wavelengths on plant development in space. The results proved A. thaliana seedlings respond to partial gravity levels differently than to microgravity. The transcriptomic analysis showed microgravity produced a downregulation in photosynthesis function and an increase in plastid and mitochondrial genome expression in comparison to 1 g control. Different levels of partial gravity also had a differential effect on A. thaliana seedlings transcriptome. We tested 5 different gravity levels in SG1-2, namely microgravity, low g (0.09 g), Moon gravity (0.18 g), Mars gravity (0.36 g) and reduced g (0.57 g) for the last two days of the experiment. Surprisingly, low g was the condition which had the highest impact on transcriptomic expression compared to the 1 g control. However, higher gravity levels (0.18-0.57 g) showed fewer differences with the control, being almost non-existent at reduced gravity level (0.57 g). On the other hand, Mars gravity level produced an adaptive response to the space environment, as shown in SG2-3, where seedlings were exposed to altered gravity levels throughout the experiment. This adaptive response was observed in the transcriptomic data, where abscisic acid (ABA), ethylene and salicylic acid (SA) signaling pathways were activated. In addition, we analyzed possible enrichment of transcripts encoding different transcription factor (TF) families at different gravity levels and found WRKY and ATAF1/2 CUC2 (cup-shaped cotyledon) (NAC) TF were significantly enriched in Mars condition. These TFs are known targets for genetic crops improvement and this strategy could be used to produce crops better adapted to the space environment.Moreover, we included two mutants, nuc1-2 and nuc2-2, deficient in the two variants of the nucleolar protein nucleolin, into the SG2-3 experiment in order to study how ribosome biogenesis is affected in space. As an additional advantage, NUC2 protein is known to participate in the general stress response of plants. First, we analyzed the response of these mutant lines to the space experiment growth conditions in the ground control. We found a differential response of nuc1-2 and nuc2-2 to red light photostimulation compared to WT seedlings, which suggests NUC2 is involved in the response to red light. In addition, the results suggest NUC2 overexpression and red light photostimulation could be beneficial to plants in space. This analysis will help us to understand how the space environment influences ribosome biogenesis in space. Space research is very scarce due to high cost and complex logistics. This has enforced the use of microgravity simulation as a tool to further explore microgravity effects and validate results from the space experiments. The simplest and most accessible device for microgravity simulation is the 2D-clinostat. However, the variability in the use of clinostats for microgravity simulation complicates the comparison between different experiments, and some results obtained may not reflect the response to microgravity itself. We studied the most common clinorotation speeds and two orientations of the sample in respect to the rotation axis to analyze different outcomes. We demonstrate the limitations of fast clinorotation, which is effective only at a very small distance from the center of rotation. In addition, we found a stress response in horizontally clinorotated seedlings which was not connected to the response to microgravity. These results make slow vertical clinorotation the most proper setting in our system.[ES]La exploración espacial necesitará el uso de plantas como parte de los sistemas de soporte vital biorregenerativos para proporcionar oxígeno y nutrientes, y también como parte del sistema de reciclaje de desechos. Aún se está estudiando cómo el ambiente espacial afecta el crecimiento y desarrollo de las plantas. La exposición a la microgravedad afecta las funciones de las plantas a diferentes niveles, como el crecimiento y la proliferación celular, la biogénesis de ribosomas, alteraciones en el estado oxidativo, o la expresión de proteínas de choque térmico. Se produce una reprogramación considerable de la expresión génica en respuesta al cambio ambiental. El experimento espacial Seedling Growth (SG) se realizó en tres lanzamientos diferentes, con diferentes ecotipos y genotipos de Arabidopsis thaliana. Las plántulas fueron expuestas a diferentes niveles de gravedad durante 2 (SG1-2) o 6 días (SG2-3) y diferentes condiciones de luz, incluida la iluminación lateral de luz azul y roja para analizar los efectos de estas longitudes de onda en el desarrollo de las plantas en el espacio. Los resultados demostraron que las plántulas de A. thaliana responden a los niveles de gravedad parcial de manera diferente que a la microgravedad. El análisis transcriptómico mostró que la microgravedad producía una bajada en la transcripción de genes relacionados con la fotosíntesis y un aumento en la expresión del genoma mitocondrial y de los plástidos en comparación con el control 1 g. Los diferentes niveles de gravedad parcial también tuvieron un efecto diferencial en el transcriptoma de las plántulas de A. thaliana. Probamos 5 niveles de gravedad diferentes en SG1-2, microgravedad, gravedad baja (0,09 g), gravedad lunar (0,18 g), gravedad de Marte (0,36 g) y gravedad reducida (0,57 g) durante los dos últimos días del experimento. Sorprendentemente, la gravedad baja fue la condición que tuvo el mayor impacto en la expresión transcriptómica en comparación con el control de 1 g. Sin embargo, los niveles de gravedad más altos (0,18-0,57 g) mostraron menos diferencias con el control, siendo casi inexistentes a nivel de gravedad reducido (0,57 g).Por otro lado, el nivel de gravedad de Marte produjo una respuesta adaptativa al entorno espacial, como se muestra en SG2-3, donde las plántulas fueron expuestas a niveles de gravedad alterados durante todo el experimento. Esta respuesta adaptativa se observó en los datos transcriptómicos, donde se activaron las vías de señalización del ácido abscísico (ABA), etileno y ácido salicílico (SA). Además, analizamos el posible enriquecimiento en la transcripción de diferentes familias de factores de transcripción (TF) en diferentes niveles de gravedad y encontramos que WRKY y ATAF1/2 CUC2 (cup-shaped cotyledon) (NAC) TF se enriquecieron significativamente en el nivel de gravedad de Marte. Estos TF son objetivos conocidos para la mejora genética de cultivos y esta estrategia podría usarse para producir cultivos mejor adaptados al ambiente espacial. Además, incluimos dos mutantes, nuc1-2 y nuc2-2, deficientes en las dos variantes de la proteína nucleolar nucleolina, en el experimento SG2-3 para estudiar cómo se ve afectada la biogénesis de los ribosomas en el espacio. Como ventaja adicional, se sabe que la proteína NUC2 participa en la respuesta general al estrés de las plantas. Primero, analizamos la respuesta de estas líneas mutantes a las condiciones de crecimiento del experimento espacial en el control en Tierra. Encontramos una respuesta diferencial de nuc1-2 y nuc2-2 a la fotoestimulación con luz roja en comparación con las plántulas WT, lo que sugiere que NUC2 está involucrado en la respuesta a la luz roja. Además, los resultados sugieren que la sobreexpresión de NUC2 y la fotoestimulación de la luz roja podrían serbeneficiosas para las plantas en el espacio. Este análisis nos ayudará a comprender cómo el entorno espacial influye en la biogénesis de los ribosomas en el espacio. La investigación espacial es muy escasa debido al alto coste y la compleja logística. Esto ha reforzado el uso de la simulación de microgravedad como herramienta para explorar más a fondo los efectos de la microgravedad y validar los resultados de los experimentos espaciales. El dispositivo más simple y accesible para la simulación de microgravedad es el clinostato 2D. Sin embargo, la variabilidad en el uso de clinostatos para la simulación de microgravedad complica la comparación entre diferentes experimentos, y algunos resultados obtenidos pueden no reflejar la respuesta a la microgravedad en sí. Estudiamos dos de las velocidades de clinorrotación más comunes y dos orientaciones de la muestra con respecto al eje de rotación para analizar diferentes resultados. Demostramos las limitaciones de la clinorrotación rápida, que es efectiva solo a una distancia muy pequeña del centro de rotación. Además, encontramos una respuesta al estrés en las plántulas con clinorrotación horizontal que no estaba relacionada con la respuesta a la microgravedad. Estos resultados muestran que la clinorrotación vertical lenta es la más adecuada para la simulación de la microgravedad en nuestro sistema.Proyectos ESP2015-64323-R y RTI2018-099309-B-I00. Proyecto LSRA2009-0932 de la Agencia Espacial Europea (ESA) y la NASA para la experimentación en la ISS. Contrato FPI BES-2016-077976.Peer reviewe

    Efectos de la microgravedad y de la gravedad parcial e influencia de la fotoestimulación sobre la adaptación de las plantas al vuelo espacial.

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología. Fecha de lectura: 16-09-202
    corecore