111 research outputs found

    Design of a Supervisory Control System for Autonomous Operation of Advanced Reactors

    Full text link
    Advanced reactors to be deployed in the coming decades will face deregulated energy markets, and may adopt flexible operation to boost profitability. To aid in the transition from baseload to flexible operation paradigm, autonomous operation is sought. This work focuses on the control aspect of autonomous operation. Specifically, a hierarchical control system is designed to support constraint enforcement during routine operational transients. Within the system, data-driven modeling, physics-based state observation, and classical control algorithms are integrated to provide an adaptable and robust solution. A 320 MW Fluoride-cooled High-temperature Pebble-bed Reactor is the design basis for demonstrating the control system. The hierarchical control system consists of a supervisory layer and low-level layer. The supervisory layer receives requests to change the system's operating conditions, and accepts or rejects them based on constraints that have been assigned. Constraints are issued to keep the plant within an optimal operating region. The low-level layer interfaces with the actuators of the system to fulfill requested changes, while maintaining tracking and regulation duties. To accept requests at the supervisory layer, the Reference Governor algorithm was adopted. To model the dynamics of the reactor, a system identification algorithm, Dynamic Mode Decomposition, was utilized. To estimate the evolution of process variables that cannot be directly measured, the Unscented Kalman Filter, incorporating a nonlinear model of nuclear dynamics, was adopted. The composition of these algorithms led to a numerical demonstration of constraint enforcement during a 40 % power drop transient. Adaptability was demonstrated by modifying the constraint values, and enforcing them during the transient. Robustness was demonstrated by enforcing constraints under noisy environments.Comment: 19 pages, 12 figure

    Enantioselective Biocascade Catalysis with a Single Multifunctional Enzyme

    Get PDF
    Asymmetric catalytic cascade processes offer direct access to complex chiral molecules from simple substrates and in a single step. In biocatalysis, cascades are generally designed by combining multiple enzymes, each catalyzing individual steps of a sequence. Herein, we report a different strategy for biocascades based on a single multifunctional enzyme that can promote multiple stereoselective steps of a domino process by mastering distinct catalytic mechanisms of substrate activation in a sequential way. Specifically, we have used an engineered 4-oxalocrotonate tautomerase (4-OT) enzyme with the ability to form both enamines and iminium ions and combine their mechanisms of catalysis in a complex sequence. This approach allowed us to activate aldehydes and enals toward the synthesis of enantiopure cyclohexene carbaldehydes. The multifunctional 4-OT enzymes could promote both a two-component reaction and a triple cascade characterized by different mechanisms and activation sequences

    Using Markov Models and Statistics to Learn, Extract, Fuse, and Detect Patterns in Raw Data

    Full text link
    Many systems are partially stochastic in nature. We have derived data driven approaches for extracting stochastic state machines (Markov models) directly from observed data. This chapter provides an overview of our approach with numerous practical applications. We have used this approach for inferring shipping patterns, exploiting computer system side-channel information, and detecting botnet activities. For contrast, we include a related data-driven statistical inferencing approach that detects and localizes radiation sources.Comment: Accepted by 2017 International Symposium on Sensor Networks, Systems and Securit

    Incorporating background frequency improves entropy-based residue conservation measures

    Get PDF
    BACKGROUND: Several entropy-based methods have been developed for scoring sequence conservation in protein multiple sequence alignments. High scoring amino acid positions may correlate with structurally or functionally important residues. However, amino acid background frequencies are usually not taken into account in these entropy-based scoring schemes. RESULTS: We demonstrate that using a relative entropy measure that incorporates amino acid background frequency results in improved performance in identifying functional sites from protein multiple sequence alignments. CONCLUSION: Our results suggest that the application of appropriate background frequency information may lead to more biologically relevant results in many areas of bioinformatics
    corecore