136 research outputs found

    Progressive Retinal Atrophy in the Border Collie: A new XLPRA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several forms of progressive retinal atrophy (PRA) segregate in more than 100 breeds of dog with each PRA segregating in one or a few breeds. This breed specificity may be accounted for by founder effects and genetic drift, which have reduced the genetic heterogeneity of each breed, thereby facilitating the identification of causal mutations. We report here a new form of PRA segregating in the Border Collie breed. The clinical signs, including the loss of night vision and a progressive loss of day vision, resulting in complete blindness, occur at the age of three to four years and may be detected earlier through systematic ocular fundus examination and electroretinography (ERG).</p> <p>Results</p> <p>Ophthalmic examinations performed on 487 dogs showed that affected dogs present a classical form of PRA. Of those, 274 have been sampled for DNA extraction and 87 could be connected through a large pedigree. Segregation analysis suggested an X-linked mode of transmission; therefore both XLPRA1 and XLPRA2 mutations were excluded through the genetic tests.</p> <p>Conclusion</p> <p>Having excluded these mutations, we suggest that this PRA segregating in Border Collie is a new XLPRA (XLPRA3) and propose it as a potential model for the homologous human disease, X-Linked Retinitis Pigmentosa.</p

    Coat colour in dogs: identification of the Merle locus in the Australian shepherd breed

    Get PDF
    BACKGROUND: Coat colours in canines have many natural phenotypic variants. Some of the genes and alleles involved also cause genetic developmental defects, which are also observed in humans and mice. We studied the genetic bases of the merle phenotype in dogs to shed light on the pigmentation mechanisms and to identify genes involved in these complex pathways. The merle phenotype includes a lack of eumelanic pigmentation and developmental defects, hearing impairments and microphthalmia. It is similar to that observed in microphthalmia mouse mutants. RESULTS: Taking advantage of the dog as a powerful genetic model and using recently available genomic resources, we investigated the segregation of the merle phenotype in a five-generation pedigree, comprising 96 sampled Australian shepherd dogs. Genetic linkage analysis allowed us to identify a locus for the merle phenotype, spanning 5.5 megabases, at the centromeric tip of canine chromosome 10 (CFA10). This locus was supported by a Lod score of 15.65 at a recombination fraction θ = 0. Linkage analysis in three other breeds revealed that the same region is linked to the merle phenotype. This region, which is orthologous to human chromosome 12 (HSA12 q13-q14), belongs to a conserved ordered segment in the human and mouse genome and comprises several genes potentially involved in pigmentation and development. CONCLUSION: This study has identified the locus for the merle coat colour in dogs to be at the centromeric end of CFA10. Genetic studies on other breeds segregating the merle phenotype should allow the locus to be defined more accurately with the aim of identifying the gene. This work shows the power of the canine system to search for the genetic bases of mammalian pigmentation and developmental pathways

    Publisher Correction:Germline de novo mutation clusters arise during oocyte aging in genomic regions with high double-strand-break incidence (Nature Genetics, (2018), 50, 4, (487-492), 10.1038/s41588-018-0071-6)

    Get PDF
    In the HTML version of the article originally published, the figures for Supplementary Figures 1–15 were incorrect and did not match the correct figures in the PDF of Supplementary Text and Figures. The error has been corrected in the HTML version of the article

    Phospholipase A2-activating protein is associated with a novel form of leukoencephalopathy

    Get PDF
    Leukoencephalopathies are a group of white matter disorders related to abnormal formation, maintenance, and turnover of myelin in the central nervous system. These disorders of the brain are categorized according to neuroradiological and pathophysiological criteria. Herein, we have identified a unique form of leukoencephalopathy in seven patients presenting at ages 2 to 4 months with progressive microcephaly, spastic quadriparesis, and global developmental delay. Clinical, metabolic, and imaging characterization of seven patients followed by homozygosity mapping and linkage analysis were performed. Next generation sequencing, bioinformatics, and segregation analyses followed, to determine a loss of function sequence variation in the phospholipase A2-activating protein encoding gene (PLAA). Expression and functional studies of the encoded protein were performed and included measurement of prostaglandin E2 and cytosolic phospholipase A2 activity in membrane fractions of fibroblasts derived from patients and healthy controls. Plaa-null mice were generated and prostaglandin E2 levels were measured in different tissues. The novel phenotype of our patients segregated with a homozygous loss-of-function sequence variant, causing the substitution of leucine at position 752 to phenylalanine, in PLAA, which causes disruption of the protein's ability to induce prostaglandin E2 and cytosolic phospholipase A2 synthesis in patients' fibroblasts. Plaa-null mice were perinatal lethal with reduced brain levels of prostaglandin E2 The non-functional phospholipase A2-activating protein and the associated neurological phenotype, reported herein for the first time, join other complex phospholipid defects that cause leukoencephalopathies in humans, emphasizing the importance of this axis in white matter development and maintenance

    Deleterious variants in TRAK1 disrupt mitochondrial movement and cause fatal encephalopathy

    Get PDF
    This is the author accepted manuscript. The final version is available from Oxford University Press via the DOI in this record.The corrigendum to this article is in ORE: http://hdl.handle.net/10871/33588Cellular distribution and dynamics of mitochondria are regulated by several motor proteins and a microtubule network. In neurons, mitochondrial trafficking is crucial because of high energy needs and calcium ion buffering along axons to synapses during neurotransmission. The trafficking kinesin proteins (TRAKs) are well characterized for their role in lysosomal and mitochondrial trafficking in cells, especially neurons. Using whole exome sequencing, we identified homozygous truncating variants in TRAK1 (NM_001042646:c.287-2A > C), in six lethal encephalopathic patients from three unrelated families. The pathogenic variant results in aberrant splicing and significantly reduced gene expression at the RNA and protein levels. In comparison with normal cells, TRAK1-deficient fibroblasts showed irregular mitochondrial distribution, altered mitochondrial motility, reduced mitochondrial membrane potential, and diminished mitochondrial respiration. This study confirms the role of TRAK1 in mitochondrial dynamics and constitutes the first report of this gene in association with a severe neurodevelopmental disorder.D.M.E. and J.K. are supported by the Office of Naval Research (ONR) Grant N000141410538. M.S. is supported by the BBSRC (BB/K006231/1), a Wellcome Trust Institutional Strategic Support Award (WT097835MF, WT105618MA), and a Marie Curie Initial Training Network (ITN) action PerFuMe (316723). M.C.V.M., J.S., H.P., C.F., T.V. and W.A.G. are supported by the NGHRI Intramural Research Program. G.R. is supported by the Kahn Family Foundation and the Israeli Centers of Excellence (I-CORE) Program (ISF grant no. 41/11)

    TMEM218 dysfunction causes ciliopathies, including Joubert and Meckel syndromes.

    Get PDF
    The Joubert-Meckel syndrome spectrum is a continuum of recessive ciliopathy conditions caused by primary cilium dysfunction. The primary cilium is a microtubule-based, antenna-like organelle that projects from the surface of most human cell types, allowing them to respond to extracellular signals. The cilium is partitioned from the cell body by the transition zone, a known hotspot for ciliopathy-related proteins. Despite years of Joubert syndrome (JBTS) gene discovery, the genetic cause cannot be identified in up to 30% of individuals with JBTS, depending on the cohort, sequencing method, and criteria for pathogenic variants. Using exome and targeted sequencing of 655 families with JBTS, we identified three individuals from two families harboring biallelic, rare, predicted-deleterious missense TMEM218 variants. Via MatchMaker Exchange, we identified biallelic TMEM218 variants in four additional families with ciliopathy phenotypes. Of note, four of the six families carry missense variants affecting the same highly conserved amino acid position 115. Clinical features included the molar tooth sign (N = 2), occipital encephalocele (N = 5, all fetuses), retinal dystrophy (N = 4, all living individuals), polycystic kidneys (N = 2), and polydactyly (N = 2), without liver involvement. Combined with existing functional data linking TMEM218 to ciliary transition zone function, our human genetic data make a strong case for TMEM218 dysfunction as a cause of ciliopathy phenotypes including JBTS with retinal dystrophy and Meckel syndrome. Identifying all genetic causes of the Joubert-Meckel spectrum enables diagnostic testing, prognostic and recurrence risk counseling, and medical monitoring, as well as work to delineate the underlying biological mechanisms and identify targets for future therapies

    Pathogenic mechanisms and clinical implications of congenital neutropenia syndromes

    Get PDF
    Purpose of reviewThe purpose of this review is to summarize pathogenic mechanisms and clinical implications of the most illustrative genetic entities of congenital neutropenia syndromes.Recent findingsCongenital neutropenia comprise monogenetic entities with or without additional immunologic and extrahaematopoietic syndromatic features. Continuous careful explorations of known entities such as ELANE, GFI1, HAX1, G6PC3 deficiency and XLN help to define principles controlling differentiation and function of neutrophil granulocytes. Furthermore, the identification of novel genetic defects associated with congenital neutropenia, such as VPS45 deficiency, broadens our understanding of neutrophil biology. Pathogenic mechanisms imply protein and vesicle mistrafficking, endoplasmic reticulum stress, the unfolded protein response, destabilization of the mitochondrial membrane potential, disturbed energy metabolism, dysglycosylation and deregulated actin polymerization.SummaryAdvanced genetic and biochemical techniques have helped to expand our knowledge of congenital neutropenia syndromes. Known and novel genetic entities shed light on fundamental biological processes important for the homeostatis and functioning not only of the neutrophil granulocyte but as well of the entire haematopoietic system. Furthermore, treatment decisions become more tailored and might pave the road towards personalized molecular medicine

    Deleterious variants in TRAK1 disrupt mitochondrial movement and cause fatal encephalopathy

    Get PDF
    Cellular distribution and dynamics of mitochondria are regulated by several motor proteins and a microtubule network. In neurons, mitochondrial trafficking is crucial because of high energy needs and calcium ion buffering along axons to synapses during neurotransmission. The trafficking kinesin proteins (TRAKs) are well characterized for their role in lysosomal and mitochondrial trafficking in cells, especially neurons. Using whole exome sequencing, we identified homozygous truncating variants in TRAK1 (NM_001042646:c.287-2A > C), in six lethal encephalopathic patients from three unrelated families. The pathogenic variant results in aberrant splicing and significantly reduced gene expression at the RNA and protein levels. In comparison with normal cells, TRAK1-deficient fibroblasts showed irregular mitochondrial distribution, altered mitochondrial motility, reduced mitochondrial membrane potential, and diminished mitochondrial respiration. This study confirms the role of TRAK1 in mitochondrial dynamics and constitutes the first report of this gene in association with a severe neurodevelopmental disorder

    Recherche de gènes responsables de rétinopathies (apports du modèle canin)

    No full text
    Mon travail de thèse a consisté en la recherche des bases génétiques de rétinopathies chez le chien, comme modèle des maladies humaines correspondantes: les rétinites pigmentaires chez l Homme avec une prévalence de 1/3600 qui aboutissent à la cécité. Les homologues canins des rétinites pigmentaires sont les atrophies progressives de la rétine (APR). L intérêt du modèle canin réside dans l histoire du chien et des races qui fait qu au sein d une race, une seule forme d APR ségrège et donc facilite les recherches génétiques. Mon sujet principal a porté sur une APR chez le Border Collie. Un pedigree de 200 chiens a été constitué et une transmission récessive liée au chromosome X a été montrée. Une analyse de liaison génétique à permis l identification d un nouveau locus de 12 Mb dans lequel des gènes candidats métaboliques ont été séquencés. La thèse présente également un travail sur une autre rétinopathie ainsi que des recherches génétiques sur des anomalies du développement.My Ph.D. work consisted of the research of the genetic bases of rétinopathies in the dog, like model of the corresponding human diseases: pigmentary retinites at the Man with a prevalence of 1/3600 which end in blindness. The canine homologous of pigmentary retinites are the progressive atrophies of retina (PRA). The interest of the canine model lies in the history of the dog and the races which makes that within a race, only one form of PRA segregates and thus facilitates genetic research. My main subject dealt with a PRA in Border Collie. A pedigree of 200 dogs was made up and a recessive transmission related to X chromosome was shown. A linkage analysis permitted the identification of a new 12 Mb locus in which metabolic candidate genes had been sequenced. The Ph.D. also presents a work on another retinopathy and genetic researches on anomalies of the development.RENNES1-BU Sciences Philo (352382102) / SudocSudocFranceF
    • …
    corecore