13 research outputs found

    Cruise Summary Report - MEDWAVES survey. MEDiterranean out flow WAter and Vulnerable EcosystemS (MEDWAVES)

    Get PDF
    The MEDWAVES (MEDiterranean out flow WAter and Vulnerable EcosystemS) cruise targeted areas under the potential influence of the MOW within the Mediterranean and Atlantic realms. These include seamounts where Cold-water corals (CWCs) have been reported but that are still poorly known, and which may act as essential “stepping stones” connecting fauna of seamounts in the Mediterranean with those of the continental shelf of Portugal, the Azores and the Mid-Atlantic Ridge. During MEDWAVES sampling has been conducted in two of the case studies of ATLAS: Case study 7 (Gulf of Cádiz-Strait of Gibraltar-Alboran Sea) and Case study 8 (Azores). The initially targeted areas in the Atlantic were: the Gazul Mud volcano, in the Gulf of Cádiz (GoC) area, included in the case study 7, and the Atlantic seamounts Ormonde (Portuguese shelf) and Formigas (by Azores), both part of the case study 8. In the Mediterranean the targeted areas were The Guadiaro submarine canyon and the Seco de los Olivos (also known as Chella Bank) seamount. Unfortunately it was not possible to sample in Guadiaro due to time constraints originated by adverse meteorological conditions which obligate us to reduce the time at sea focusing only in 4 of the 5 initially planned areas. MEDWAVES was structured in two legs; the first leg took place from the 21st September (departure from Cádiz harbour in Spain) to the 13th October 2016 (arrival in Ponta Delgada, São Miguel, Azores, Portugal took place the 8th of October due to the meteorological conditions that obligated to conclude the first leg earlier as planned). during the Leg 1 sampling was carried out in Gazul, Ormonde and Formigas. The second leg started the 14th October (departure from Ponta Delgada) and finished the 26th October (arrival in Málaga harbour, Spain). MEDWAVES had a total of 30 effective sampling days, being 6 days not operative due to the adverse meteorological conditions experienced during the first leg which forced us to stay in Ponta Delgada from the 08th to the 13th October. During MEDWAVES the daily routine followed a similar scheme, depending of course on the weather and sea conditions. The main activity during the day, starting early in the morning (around 08:00 AM, once the night activities were finished), was the ROV deployment. Generally a single ROV dive of around 8 hours was performed, however in several occasions two dives were carried out in the same day (see General station list, Appendix II). After the ROV (and sometimes between two dives) the Box Corer and/or Van Veen Grab and/or Multicore was deployed. After these activities, during the night CTD-Rosette deployments and MB was conducted. Accordingly to this schema the scientific personnel worked in the day or in the night watch. A total of 215 sampling stations have been covered in MEDWAVES, using the following sampling gears: Multibeam echosounder, CTD-Rosette, LADCP, Box Corer, Van Veen Grab, Multicorer and a Remotely Operated Vehicle (ROV). Table 1 sumamrised the number of sampling stations conducted with each gear in each sampling zone. Additionally MB surveys have been conducted during the transits between area

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Biochemical composition of the cold-water coral Dendrophyllia cornigera under contrasting productivity regimes: insights from lipid biomarkers and compound-specific isotopes

    No full text
    The cold-water coral (CWC) Dendrophyllia cornigera is widely distributed in areas of both high and low productivity, suggesting a significant trophic plasticity of this coral depending on the food available in the environment. In this study, lipid biomarkers and their isotopic signature were compared in colonies of D. cornigera and sediment from the highly productive Cantabrian Sea (Northeast Atlantic Ocean) and the less productive Menorca Channel (Western Mediterranean Sea). Lipid content and composition in coral tissue clearly reflected the contrasting productivity in the two areas. Cantabrian corals presented higher content in fatty acids (FA), fatty alcohols and sterols than Menorca corals. Energy storage (saturated + mono-unsaturated FA) to structural (poly-unsaturated FA) ratio was higher in Cantabrian than in Menorca corals. The high ΣC20:1 content as well as PUFA(n-3)/PUFA(n-6) ratio suggest that Cantabrian corals mainly feed on phytoplankton and herbivorous grazers. This is also supported by the higher mono-unsaturated fatty alcohols (MUOH) and long chain mono-unsaturated fatty alcohols (LCMUOH) content in Cantabrian compared to Menorca corals. Conversely, higher PUFA(n-6) content in Menorca corals, with the dominance of C22:4(n-6) and C20:4(n-6), as well as the dominance of cholesterol and norC27Δ5,22 among sterols, point to a higher trophic role of dinoflagellates and invertebrates. The observed geographical variability in trophic ecology supports a high trophic plasticity of D. cornigera, which may favour the wide distribution of this CWC in areas with highly contrasted food availability

    Los corales de profundidad

    No full text
    En el mar profundo, allí donde la luz no llega a penetrar, el océano se hace oscuro y los ecosistemas dominados por organismos vegetales dejan paso a otros formados únicamente por animales. Entre estos ecosistemas de las zonas profundas, están los arrecifes y bosques de corales de profundidad. Como en el caso de los ecosistemas de corales tropicales, se trata de complejas estructuras tridimensionales generadas por el lento crecimiento de corales pétreos, cuyos esqueletos están formados por carbonato de calcio, así como de gorgonias y corales negros cuyos esqueletos tienen una estructura proteica. La complejidad estructural que estos organismos sésiles generan es aprovechada por multitud de especies de invertebrados y de peces que entre sus ramas encuentran refugio, alimento o el lugar idóneo de cría. Esta combinación de morfologías, colores y formas de vida da lugar a unos ecosistemas de altísima diversidad y de gran belleza. A diferencia de los corales tropicales, que se sustentan principalmente por la fotosíntesis de algas simbiontes albergadas en sus tejidos, los corales de profundidad se alimentan de las partículas y organismos que se encuentran suspendidos en el agua y que capturan gracias a los tentáculos de sus pólipos. Se trata por tanto de organismos exclusivamente heterotróficos que se alimentan de plancton y de partículas de materia orgánica. Los corales de profundidad están presentes en todos los océanos del planeta, principalmente entre 150 y 2000 m de profundidad, en aguas frías y ricas en alimento. En el Mar Mediterráneo son muchos los lugares en los que se ha observado la presencia de comunidades de corales de profundidad, especialmente en las cimas y flancos de montañas submarinas, así como en las paredes de los cañones submarinos que inciden los márgenes continentales. También se han documentado poblaciones de corales y gorgonias de profundidad en fondos rocosos de los sectores más profundos de las plataformas continentales y en sus márgenes. La elevada diversidad de especies asociada a los corales de profundidad hace de estas comunidades un enclave atractivo para la actividad pesquera. Redes y palangres de fondo pueden dañar o romper las ramas de los corales, favoreciendo así el crecimiento de organismos que los recubren y que pueden llegar a ocasionarles la muerte. Si bien la pesca de arrastre no actúa directamente en los fondos rocosos, ya que suponen un alto riesgo para el arte de pesca, el efecto que provoca su paso por los fondos sedimentarios cercanos es notable, suponiendo un importante aumento de sedimento en suspensión que puede llegar a dejar cubiertos a los corales por un fino fango del cual no pueden liberarse. A estos impactos directos hay que añadir la vulnerabilidad de estos organismos a los cambios fisicoquímicos y biológicos derivados del cambio global, especialmente los que afectan a la química de los carbonatos (acidificación), el aumento de la temperatura del agua de mar (estrés térmico) y los cambios en la circulación y la producción primaria (cambios en la disponibilidad de alimento). ​ Por todo ello, y teniendo en cuenta la elevada longevidad y el lento crecimiento de los corales de profundidad, es absolutamente necesario implementar medidas eficaces de protección de estos ecosistemas, que deben incluir la regulación de las actividades de pesca, la mejora en la selectividad de las artes de pesca para reducir su impacto, y el establecimiento de áreas marinas protegidas que incluyan las comunidades de corales de profundidad

    Collaborative Database to track Mass Mortality Events in the Mediterranean sea

    No full text
    Anthropogenic climate change, and global warming in particular, has strong and increasing impacts on marine ecosystems (Poloczanska et al., 2013; Halpern et al., 2015; Smale et al., 2019). The Mediterranean Sea is considered a marine biodiversity hot-spot contributing to more than 7% of world's marine biodiversity including a high percentage of endemic species (Coll et al., 2010). The Mediterranean region is a climate change hotspot, where the respective impacts of warming are very pronounced and relatively well documented (Cramer et al., 2018). One of the major impacts of sea surface temperature rise in the marine coastal ecosystems is the occurrence of mass mortality events (MMEs). The first evidences of this phenomenon dated from the first half of'80 years affecting the Western Mediterranean and the Aegean Sea (Harmelin, 1984; Bavestrello and Boero, 1986; Gaino and Pronzato, 1989; Voultsiadou et al., 2011). The most impressive phenomenon happened in 1999 when an unprecedented large scale MME impacted populations of more than 30 species from different phyla along the French and Italian coasts (Cerrano et al., 2000; Perez et al., 2000). Following this event, several other large scale MMEs have been reported, along with numerous other minor ones, which are usually more restricted in geographic extend and/or number of affected species (Garrabou et al., 2009; Rivetti et al., 2014; Marbà et al., 2015; Rubio-Portillo et al., 2016, authors' personal observations). These events have generally been associated with strong and recurrent marine heat waves (Crisci et al., 2011; Kersting et al., 2013; Turicchia et al., 2018; Bensoussan et al., 2019) which are becoming more frequent globally (Smale et al., 2019). Both field observations and future projections using Regional Coupled Models (Adloff et al., 2015; Darmaraki et al., 2019) show the increase in Mediterranean sea surface temperature, with more frequent occurrence of extreme ocean warming events. As a result, new MMEs are expected during the coming years. To date, despite the efforts, neither updated nor comprehensive information can support scientific analysis of mortality events at a Mediterranean regional scale. Such information is vital to guide management and conservation strategies that can then inform adaptive management schemes that aim to face the impacts of climate change.S

    Collaborative Database to track Mass Mortality Events in the Mediterranean sea

    No full text
    Anthropogenic climate change, and global warming in particular, has strong and increasing impacts on marine ecosystems (Poloczanska et al., 2013; Halpern et al., 2015; Smale et al., 2019). The Mediterranean Sea is considered a marine biodiversity hot-spot contributing to more than 7% of world's marine biodiversity including a high percentage of endemic species (Coll et al., 2010). The Mediterranean region is a climate change hotspot, where the respective impacts of warming are very pronounced and relatively well documented (Cramer et al., 2018). One of the major impacts of sea surface temperature rise in the marine coastal ecosystems is the occurrence of mass mortality events (MMEs). The first evidences of this phenomenon dated from the first half of'80 years affecting the Western Mediterranean and the Aegean Sea (Harmelin, 1984; Bavestrello and Boero, 1986; Gaino and Pronzato, 1989; Voultsiadou et al., 2011). The most impressive phenomenon happened in 1999 when an unprecedented large scale MME impacted populations of more than 30 species from different phyla along the French and Italian coasts (Cerrano et al., 2000; Perez et al., 2000). Following this event, several other large scale MMEs have been reported, along with numerous other minor ones, which are usually more restricted in geographic extend and/or number of affected species (Garrabou et al., 2009; Rivetti et al., 2014; Marbà et al., 2015; Rubio-Portillo et al., 2016, authors' personal observations). These events have generally been associated with strong and recurrent marine heat waves (Crisci et al., 2011; Kersting et al., 2013; Turicchia et al., 2018; Bensoussan et al., 2019) which are becoming more frequent globally (Smale et al., 2019). Both field observations and future projections using Regional Coupled Models (Adloff et al., 2015; Darmaraki et al., 2019) show the increase in Mediterranean sea surface temperature, with more frequent occurrence of extreme ocean warming events. As a result, new MMEs are expected during the coming years. To date, despite the efforts, neither updated nor comprehensive information can support scientific analysis of mortality events at a Mediterranean regional scale. Such information is vital to guide management and conservation strategies that can then inform adaptive management schemes that aim to face the impacts of climate change
    corecore