8 research outputs found

    Multiple Paternity in a Reintroduced Population of the Orinoco Crocodile (Crocodylus intermedius) at the El FrĂ­o Biological Station, Venezuela

    Get PDF
    The success of a reintroduction program is determined by the ability of individuals to reproduce and thrive. Hence, an understanding of the mating system and breeding strategies of reintroduced species can be critical to the success, evaluation and effective management of reintroduction programs. As one of the most threatened crocodile species in the world, the Orinoco crocodile (Crocodylus intermedius) has been reduced to only a few wild populations in the Llanos of Venezuela and Colombia. One of these populations was founded by reintroduction at Caño Macanillal and La Ramera lagoon within the El Frío Biological Station, Venezuela. Twenty egg clutches of C. intermedius were collected at the El Frío Biological Station for incubation in the lab and release of juveniles after one year. Analyzing 17 polymorphic microsatellite loci from 335 hatchlings we found multiple paternity in C. intermedius, with half of the 20 clutches fathered by two or three males. Sixteen mothers and 14 fathers were inferred by reconstruction of multilocus parental genotypes. Our findings showed skewed paternal contributions to multiple-sired clutches in four of the clutches (40%), leading to an overall unequal contribution of offspring among fathers with six of the 14 inferred males fathering 90% of the total offspring, and three of those six males fathering more than 70% of the total offspring. Our results provide the first evidence of multiple paternity occurring in the Orinoco crocodile and confirm the success of reintroduction efforts of this critically endangered species in the El Frío Biological Station, Venezuela

    Phylogenomics and evolutionary history of Oreobates (Anura: Craugastoridae) Neotropical frogs along elevational gradients

    No full text
    Mountain ranges offer opportunities for understanding how species evolved and diversified across different environmental conditions. Neotropical frogs of the genus Oreobates (Anura: Craugastoridae) are adapted to highland and lowland habitats along the Andes, but many aspects of their evolution remain unknown. We studied their evolutionary history using ~18,000 exons enriched by targeted sequence-capture. Since capture success was very variable across samples, we evaluated to what degree differing data filtering produced robust inferences. The inferred evolutionary framework evidenced phylogenetic discordances among lowland species that can be explained by taxonomic misidentification or admixture of ancestral lineages. Highland species showed smaller effective populations than lowland frogs, probably due to greater habitat fragmentation in montane environments. Stronger genetic drift likely decreased the power of purifying selection and led to an increased proportion of nonsynonymous mutations in highland populations that could play an important role in their adaptation. Overall, our work sheds light on the evolutionary history and diversification of this group of Neotropical frogs along elevational gradients in the Andes as well as on their patterns of intraspecific diversity.This research was supported by grants from the Spanish Government (Ministerio de Economía y Competitividad) to C.V. (CGL2013-47547-P and CGL2016-75227-P), I.D.l.R (CGL2011-30393), and an FPI (Formación de Personal Investigador) fellowship (BES‐2014‐069006) as well as three travel grants (EEBB‐I‐16‐10576, EEBB‐I‐17‐12168, and EEBB‐I‐18‐12878) to S.M.-M.Peer reviewe
    corecore