39 research outputs found

    The polar Catalysmic Variable 1RXS J173006.4+033813

    Get PDF
    We report the discovery of 1RXS J173006.4+033813, a polar cataclysmic variable with a period of 120.21 min. The white dwarf primary has a magnetic field of B = 42+6-5 MG, and the secondary is a M3 dwarf. The system shows highly symmetric double peaked photometric modulation in the active state as well as in quiescence. These arise from a combination of cyclotron beaming and ellipsoidal modulation. The projected orbital velocity of the secondary is K2 = 390+-4 km/s. We place an upper limit of 830+-65 pc on the distance.Comment: ApJ Accepted. 12 Pages, 13 Figures, 6 table

    Getting NuSTAR on target: predicting mast motion

    Get PDF
    The Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing high energy (3-79 keV) X-ray observatory operating for four years from low Earth orbit. The X-ray detector arrays are located on the spacecraft bus with the optics modules mounted on a flexible mast of 10.14m length. The motion of the telescope optical axis on the detectors during each observation is measured by a laser metrology system and matches the pre-launch predictions of the thermal flexing of the mast as the spacecraft enters and exits the Earths shadow each orbit. However, an additional motion of the telescope field of view was discovered during observatory commissioning that is associated with the spacecraft attitude control system and an additional flexing of the mast correlated with the Solar aspect angle for the observation. We present the methodology developed to predict where any particular target coordinate will fall on the NuSTAR detectors based on the Solar aspect angle at the scheduled time of an observation. This may be applicable to future observatories that employ optics deployed on extendable masts. The automation of the prediction system has greatly improved observatory operations efficiency and the reliability of observation planning

    Development of a cadmium telluride pixel detector for astrophysical applications

    Get PDF
    We are developing imaging Cadmium Telluride (CdTe) pixel detectors optimized for astrophysical hard X-ray applications. Our hybrid detector consist of a CdTe crystal 1mm thick and 2cm × 2cm in area with segmented anode contacts directly bonded to a custom low-noise application specific integrated circuit (ASIC). The CdTe sensor, fabricated by ACRORAD (Okinawa, Japan), has Schottky blocking contacts on a 605 micron pitch in a 32 × 32 array, providing low leakage current and enabling readout of the anode side. The detector is bonded using epoxy-gold stud interconnects to a custom low noise, low power ASIC circuit developed by Caltech's Space Radiation Laboratory. We have achieved very good energy resolution over a wide energy range (0.62keV FWHM @ 60keV, 10.8keV FWHM @ 662keV). We observe polarization effects at room temperature, but they are suppressed if we operate the detector at or below 0°C degree. These detectors have potential application for future missions such as the International X-ray Observatory (IXO)

    Inflight performance and calibration of the NuSTAR CdZnTe pixel detectors

    Get PDF
    The Nuclear Spectroscopic Telescope Array (NuSTAR) satellite is a NASA Small Explorer mission designed to operate the first focusing high-energy X-ray (3-79 keV) telescope in orbit. Since the launch in June 2012, all the NuSTAR components have been working normally. The focal plane module is equipped with an 155Eu radioactive source to irradiate the CdZnTe pixel detectors for independent calibration separately from optics. The inflight spectral calibration of the CdZnTe detectors is performed with the onboard 155Eu source. The derived detector performance agrees well with ground-measured data. The in-orbit detector background rate is stable and the lowest among past high-energy X-ray instruments

    Spectral calibration and modeling of the NuSTAR CdZnTe pixel detectors

    Get PDF
    The Nuclear Spectroscopic Telescope Array (NuSTAR) will be the first space mission to focus in the hard X-ray (5-80 keV) band. The NuSTAR instrument carries two co-aligned grazing incidence hard X-ray telescopes. Each NuSTAR focal plane consists of four 2 mm CdZnTe hybrid pixel detectors, each with an active collecting area of 2 cm x 2 cm. Each hybrid consists of a 32 x 32 array of 605 micron pixels, read out with the Caltech custom low-noise NuCIT ASIC. In order to characterize the spectral response of each pixel to the degree required to meet the science calibration requirements, we have developed a model based on Geant4 together with the Shockley-Ramo theorem customized to the NuSTAR hybrid design. This model combines a Monte Carlo of the X-ray interactions with subsequent charge transport within the detector. The combination of this model and calibration data taken using radioactive sources of Co-57, Eu-155 and Am-241 enables us to determine electron and hole mobility-lifetime products for each pixel, and to compare actual to ideal performance expected for defect-free material.Comment: 11 pages, 10 figures, to appear in Proceedings of the SPIE Conference 8145: UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XVI

    The Nuclear Spectroscopic Telescope Array (NuSTAR) High-energy X-Ray Mission

    Get PDF
    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to the peak epoch of galaxy assembly in the universe (at z ≟ 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element ^(44)Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6° inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014

    NuSTAR and swift observations of the fast rotating magnetized white dwarf AE Aquarii

    Get PDF
    AE Aquarii is a cataclysmic variable with the fastest known rotating magnetized white dwarf (P_(spin) = 33.08 s). Compared to many intermediate polars, AE Aquarii shows a soft X-ray spectrum with a very low luminosity (L X ~ 10^(31) erg s^(–1)). We have analyzed overlapping observations of this system with the NuSTAR and the Swift X-ray observatories in 2012 September. We find the 0.5-30 keV spectra to be well fitted by either an optically thin thermal plasma model with three temperatures of 0.75^(+0.18)_(-0.45), 2.29^(+0.96)_(-0.82), and 9.33^(+6.07)_(-2.18) keV, or an optically thin thermal plasma model with two temperatures of 1.00^(+0.34)_(-0.23) and 4.64^(+1.58)_(-0.84) keV plus a power-law component with photon index of 2.50^(+0.17)_(-0.23). The pulse profile in the 3-20 keV band is broad and approximately sinusoidal, with a pulsed fraction of 16.6% ± 2.3%. We do not find any evidence for a previously reported sharp feature in the pulse profile

    Development of a cadmium telluride pixel detector for astrophysical applications

    Get PDF
    We are developing imaging Cadmium Telluride (CdTe) pixel detectors optimized for astrophysical hard X-ray applications. Our hybrid detector consist of a CdTe crystal 1mm thick and 2cm × 2cm in area with segmented anode contacts directly bonded to a custom low-noise application specific integrated circuit (ASIC). The CdTe sensor, fabricated by ACRORAD (Okinawa, Japan), has Schottky blocking contacts on a 605 micron pitch in a 32 × 32 array, providing low leakage current and enabling readout of the anode side. The detector is bonded using epoxy-gold stud interconnects to a custom low noise, low power ASIC circuit developed by Caltech's Space Radiation Laboratory. We have achieved very good energy resolution over a wide energy range (0.62keV FWHM @ 60keV, 10.8keV FWHM @ 662keV). We observe polarization effects at room temperature, but they are suppressed if we operate the detector at or below 0°C degree. These detectors have potential application for future missions such as the International X-ray Observatory (IXO)

    A Hard X-Ray Power-Law Spectral Cutoff in Centaurus X-4

    Get PDF
    The low-mass X-ray binary Cen X-4 is the brightest and closest (<1.2 kpc) quiescent neutron star transient. Previous 0.5-10 keV X-ray observations of Cen X-4 in quiescence identified two spectral components: soft thermal emission from the neutron star atmosphere and a hard power-law tail of unknown origin. We report here on a simultaneous observation of Cen X-4 with NuSTAR (3-79 keV) and XMM-Newton (0.3-10 keV) in 2013 January, providing the first sensitive hard X-ray spectrum of a quiescent neutron star transient. The 0.3-79 keV luminosity was 1.1 x 10^(33) erg/s (for D=1kpc), with around 60 percent in the thermal component. We clearly detect a cutoff of the hard spectral tail above 10 keV, the first time such a feature has been detected in this source class. We show that thermal Comptonization and synchrotron shock origins for the hard X-ray emission are ruled out on physical grounds. However, the hard X-ray spectrum is well fit by a thermal bremsstrahlung model with an 18 keV electron temperature, which can be understood as arising either in a hot layer above the neutron star atmosphere or in a radiatively-inefficient accretion flow (RIAF). The power-law cutoff energy may be set by the degree of Compton cooling of the bremsstrahlung electrons by thermal seed photons from the neutron star surface. Lower thermal luminosities should lead to higher (possibly undetectable) cutoff energies. We compare Cen~X-4's behavior with PSR J1023+0038, IGR J18245-2452, and XSS J12270-4859, which have shown transitions between LMXB and radio pulsar modes at a similar X-ray luminosity.Comment: 16 pages, 8 figures. Accepted for publication in ApJ. Sections 4 and 5 substantially revise

    The distribution of radioactive 44Ti in Cassiopeia A

    Get PDF
    The distribution of elements produced in the innermost layers of a supernova explosion is a key diagnostic for studying the collapse of massive stars. Here we present the results of a 2.4 Ms NuSTAR observing campaign aimed at studying the supernova remnant Cassiopeia A (Cas A). We perform spatially resolved spectroscopic analyses of the 44Ti ejecta, which we use to determine the Doppler shift and thus the three-dimensional (3D) velocities of the 44Ti ejecta. We find an initial 44Ti mass of (1.54 ± 0.21) × 10−4 M⊙, which has a present-day average momentum direction of 340° ± 15° projected onto the plane of the sky (measured clockwise from celestial north) and is tilted by 58° ± 20° into the plane of the sky away from the observer, roughly opposite to the inferred direction of motion of the central compact object. We find some 44Ti ejecta that are clearly interior to the reverse shock and some that are clearly exterior to it. Where we observe 44Ti ejecta exterior to the reverse shock we also see shock-heated iron; however, there are regions where we see iron but do not observe 44Ti. This suggests that the local conditions of the supernova shock during explosive nucleosynthesis varied enough to suppress the production of 44Ti by at least a factor of two in some regions, even in regions that are assumed to be the result of processes like α-rich freezeout that should produce both iron and titanium
    corecore