25 research outputs found

    Identification of a root-specific glycosyltransferase from Arabidopsis and characterization of its promoter

    Get PDF
    A set of Ds-element enhancer trap lines of Arabidopsis thaliana was generated and screened for expression patterns leading to the identification of a line that showed root-specific expression of the bacterial uidA reporter gene encoding β-glucuronidase (GUS). The insertion of the Ds element was found to be immediately downstream to a glycosyltransferase gene At1g73160. Analysis of At1g73160 expression showed that it is highly root-specific. Isolation and characterization of the upstream region of the At1g73160 gene led to the definition of a 218 bp fragment that is sufficient to confer root-specific expression. Sequence analysis revealed that several regulatory elements were implicated in expression in root tissue. The promoter identified and characterized in this study has the potential to be applied in crop biotechnology for directing the root-specific expression of transgenes

    AtMND1 is required for homologous pairing during meiosis in Arabidopsis

    Get PDF
    BACKGROUND: Pairing of homologous chromosomes at meiosis is an important requirement for recombination and balanced chromosome segregation among the products of meiotic division. Recombination is initiated by double strand breaks (DSBs) made by Spo11 followed by interaction of DSB sites with a homologous chromosome. This interaction requires the strand exchange proteins Rad51 and Dmc1 that bind to single stranded regions created by resection of ends at the site of DSBs and promote interactions with uncut DNA on the homologous partner. Recombination is also considered to be dependent on factors that stabilize interactions between homologous chromosomes. In budding yeast Hop2 and Mnd1 act as a complex to promote homologous pairing and recombination in conjunction with Rad51 and Dmc1. RESULTS: We have analyzed the function of the Arabidopsis orthologue of the budding yeast MND1 gene (AtMND1). Loss of AtMND1 did not affect normal vegetative development but caused fragmentation and missegregation of chromosomes in male and female meiosis, formation of inviable gametes, and sterility. Analysis of the Atmnd1 Atspo11-1 double mutant indicated that chromosome fragmentation in Atmnd1 was suppressed by loss of Atspo11-1. Fluorescence in situ hybridization (FISH) analysis showed that homologous pairing failed to occur and homologues remained apart throughout meiosis. AtMND1 showed strong expression in meiocytes as revealed by RNA in situs. CONCLUSION: We conclude that AtMND1 is required for homologous pairing and is likely to play a role in the repair of DNA double strand breaks during meiosis in Arabidopsis, thus showing conservation of function with that of MND1 during meiosis in yeast

    An Intergenic Region Shared by At4g35985 and At4g35987 in Arabidopsis Thaliana is a Tissue Specific and Stress Inducible Bidirectional Promoter Analyzed in Transgenic Arabidopsis and Tobacco Plants

    Get PDF
    On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985) are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS) in both orientations in transient tobacco protoplast and Agro-infiltration assays, as well as in stably transformed transgenic Arabidopsis and tobacco plants. In transient assays with GFP and GUS reporter genes the At4g35985 promoter (P85) showed stronger expression (about 3.5 fold) compared to the At4g35987 promoter (P87). The tissue specific as well as stress responsive functional nature of the bidirectional promoter was evaluated in independent transgenic Arabidopsis and tobacco lines. Expression of P85 activity was detected in the midrib of leaves, leaf trichomes, apical meristemic regions, throughout the root, lateral roots and flowers. The expression of P87 was observed in leaf-tip, hydathodes, apical meristem, root tips, emerging lateral root tips, root stele region and in floral tissues. The bidirectional promoter in both orientations shows differential up-regulation (2.5 to 3 fold) under salt stress. Use of such regulatory elements of bidirectional promoters showing spatial and stress inducible promoter-functions in heterologous system might be an important tool for plant biotechnology and gene stacking applications

    A comparative physicochemical and pharmacological evaluation of dexamethasone sodium phosphate and betamethasone sodium phosphate mucoadhesive gels for the treatment of oral submucous fibrosis in rats

    No full text
    The present study is aimed to formulate steroidal oral mucoadhesive gels of dexamethasone sodium phosphate and betamethasone sodium phosphate. Six gel formulations each of dexamethasone sodium phosphate and betamethasone sodium phosphate prepared using two different polymers carboxymethyl cellulose sodium and hydroxypropyl methylcellulose, in variable proportions. All the formulations subjected for assessment of various physicochemical parameters and mechanical properties. The formulations BSP5 and DSP5, both containing 1.25 % carboxymethyl cellulose sodium, 1.25 % hydroxypropyl methylcellulose, exhibiting mucoadhesive strength of 12.300 ± 0.004 and 12.600 ± 0.01, adhesiveness of 28.04 ± 00 and 30.02 ± 00, cohesiveness of 28.04 ± 00 and 30.02 ± 00, drug release of 86.869 ± 0.380 % and 88.473 ± 0.457 % respectively were considered as promising ones and were further subjected for stability studies and in vivo study in male albino rats. Formulation DSP5 upon oral application for 4 months in arecoline induced oral submucous fibrosis rats, showed more than 80 % reduction in fibrosis as compared with BSP5 which showed nearly 50 % reduction. These results were concluded on the basis of histopathological profile and weight gain among the experimental animals during in vivo study. Hence, DSP5 by minimizing the painful injuries and morbidities justifies being suitable noninvasive model for OSMF treatment

    Regioselective synthesis of 1-methylbicyclo[2.2.2]octene derivatives

    No full text
    1-Methylbicyclo[2.2.2]octenecarboxylic acids are prepd. by the cycloaddn. of dienophiles to 1-methylcyclohexa-1,3-diene-3-carboxylic acid (I,R=H,R1=CO2H)(I, R = H, R1 = CO2H) and 1-methylcyclohexa-1,3-diene-2-carboxylic acid (I,R=CO2H,R1=H)(I, R = CO2H, R1 = H). The addn. is regiospecific with I(R=H,R1=CO2H)I (R = H, R1 = CO_2H) while poor regioselectivity is obsd. with I(R=CO2H,R1=H)I (R = CO2H, R1 = H). Me esters of I are less reactive
    corecore