49 research outputs found

    Composition law for polarizers

    Full text link
    The polarization process when polarizers act on an optical field is studied. We give examples for two kinds of polarizers. The first kind presents an anisotropic absorption - as in a polaroid film - and the second one is based on total reflection at the interface with a birefringent medium. Using the Stokes vector representation, we determine explicitly the trajectories of the wave light polarization during the polarization process. We find that such trajectories are not always geodesics of the Poincar\'e sphere as it is usually thought. Using the analogy between light polarization and special relativity, we find that the action of successive polarizers on the light wave polarization is equivalent to the action of a single resulting polarizer followed by a rotation achieved for example by a device with optical activity. We find a composition law for polarizers similar to the composition law for noncollinear velocities in special relativity. We define an angle equivalent to the relativistic Wigner angle which can be used to quantify the quality of two composed polarizers.Comment: 23 pages, 9 figures, accepted for publication in Physical Review

    Constructing Fresnel reflection coefficients by ruler and compass

    Get PDF
    A simple and intuitive geometical method to analyze Fresnel formulas is presented. It applies to transparent media and is valid for perpendicular and parallel polarizations. The approach gives a graphical characterization particularly simple of the critical and Brewster angles. It also provides an interpretation of the relation between the reflection coefficients for both basic polarizations as a symmetry in the plane

    Mesure de l’épaisseur et analyse de la composition des revĂȘtements d’alliage d’or et des Ă©ventuelles sous-couches par microfluorescence X

    No full text
    Aujourd’hui, les applicateurs de traitements de surface et les donneurs d’ordres s’équipent de spectromĂštres de microfluorescence X afin de mesurer les Ă©paisseurs des revĂȘtements notamment pour valider leur conformitĂ© Ă  la rĂ©glementation sur les revĂȘtements de mĂ©taux prĂ©cieux ou au cahier des charges. Les spectromĂštres de microfluorescence X de nouvelle gĂ©nĂ©ration, Ă©quipĂ©s de logiciels proposant la dĂ©termination des Ă©paisseurs et de la composition des revĂȘtements, favorisent la diffusion de cette technologie. Cette utilisation complique les relations clients – fournisseurs Ă  cause des divergences sur l’utilisation des Ă©quipements et l’interprĂ©tation des rĂ©sultats obtenus. L’étude prĂ©sente porte sur la comparaison des valeurs obtenues par spectromĂ©trie de microfluorescence X avec des mesures rĂ©alisĂ©es sur coupe micrographique, considĂ©rĂ©e comme la mĂ©thode de rĂ©fĂ©rence. Plusieurs gammes de traitements, habituelles sur les produits dĂ©coratifs, sont Ă©tudiĂ©es. L’étude montre la rĂ©elle difficultĂ© et les limites dans la dĂ©termination de l’épaisseur des revĂȘtements d'or par microfluorescence X

    Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle

    No full text
    We study the spontaneous emission of a single emitter close to a metallic nanoparticle, with the aim to clarify the distance dependence of the radiative and non-radiative decay rates. We derive analytical formulas based on a dipole-dipole model, and show that the nonradiative decay rate follows a R-6 dependence at short distance, where R is the distance between the emitter and the center of the nanoparticle, as in Forster's energy transfer. The distance dependence of the radiative decay rate is more subtle. It is chiefly dominated by a R-3 dependence, a R-6 dependence being visible at plasmon resonance. The latter is a consequence of radiative damping in the effective dipole polarizability of the nanoparticle. The different distance behavior of the radiative and non-radiative decay rates implies that the apparent quantum yield always vanishes at short distance. Moreover, non-radiative decay is strongly enhanced when the emitter radiates at the plasmon-resonance frequency of the nanoparticle
    corecore