25 research outputs found

    A new biomimetic assay reveals the temporal role of matrix stiffening in cancer cell invasion

    Get PDF
    International audienceTumor initiation and growth is associated with significant changes in the surrounding tissue. During carcinoma progression, a global stiffening of the extracellular matrix is observed and is interpreted as a signature of aggressive invasive tumors. However, it is still unknown whether this increase in matrix rigidity promotes invasion and whether this effect is constant along the course of invasion. Here we have developed a biomimetic in vitro assay that enabled us to address the question of the importance of tissue rigidity in the chronology of tumor invasion. Using low concentrations of the sugar threose, we can effectively stiffen reconstituted collagen I matrices and control the stiffening in time with no direct effect on residing cells. Our findings demonstrate that, depending on the timing of its stiffening, the extracellular matrix could either inhibit or promote cancer cell invasion and subsequent me-tastasis: while matrix stiffening after the onset of invasion promotes cancer cell migration and tumor spreading, stiff matrices encapsulate the tumor at an early stage and prevent cancer cell invasion. Our study suggests that adding a temporal dimension in in vitro models to analyze biological processes in four dimensions is necessary to fully capture their complexity

    Endothelial cell invasion is controlled by dactylopodia

    Get PDF
    Copyright © 2021 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).Sprouting angiogenesis is fundamental for development and contributes to cancer, diabetic retinopathy, and cardiovascular diseases. Sprouting angiogenesis depends on the invasive properties of endothelial tip cells. However, there is very limited knowledge on how tip cells invade into tissues. Here, we show that endothelial tip cells use dactylopodia as the main cellular protrusion for invasion into nonvascular extracellular matrix. We show that dactylopodia and filopodia protrusions are balanced by myosin IIA (NMIIA) and actin-related protein 2/3 (Arp2/3) activity. Endothelial cell-autonomous ablation of NMIIA promotes excessive dactylopodia formation in detriment of filopodia. Conversely, endothelial cell-autonomous ablation of Arp2/3 prevents dactylopodia development and leads to excessive filopodia formation. We further show that NMIIA inhibits Rac1-dependent activation of Arp2/3 by regulating the maturation state of focal adhesions. Our discoveries establish a comprehensive model of how endothelial tip cells regulate its protrusive activity and will pave the way toward strategies to block invasive tip cells during sprouting angiogenesis.C.A.F. was supported by a European Research Council starting grant (679368), the European Union H2020-TWINN-2015—Twinning (692322), the Fundação para a Ciência e a Tecnologia funding (grants IF/00412/2012, EXPL/BEX-BCM/2258/2013, PTDC/MED-PAT/31639/2017, and PTDC/BIA-CEL/32180/2017 and fellowships CEECIND/04251/2017 and CEECIND/02589/2018), and a grant from the Fondation Leducq (17CVD03).info:eu-repo/semantics/publishedVersio

    Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration

    Get PDF
    Intestinal organoids capture essential features of the intestinal epithelium such as crypt folding, cellular compartmentalization and collective movements. Each of these processes and their coordination require patterned forces that are at present unknown. Here we map three-dimensional cellular forces in mouse intestinal organoids grown on soft hydrogels. We show that these organoids exhibit a non-monotonic stress distribution that defines mechanical and functional compartments. The stem cell compartment pushes the extracellular matrix and folds through apical constriction, whereas the transit amplifying zone pulls the extracellular matrix and elongates through basal constriction. The size of the stem cell compartment depends on the extracellular-matrix stiffness and endogenous cellular forces. Computational modelling reveals that crypt shape and force distribution rely on cell surface tensions following cortical actomyosin density. Finally, cells are pulled out of the crypt along a gradient of increasing tension. Our study unveils how patterned forces enable compartmentalization, folding and collective migration in the intestinal epithelium

    Cell Migration in Tissues: Explant Culture and Live Imaging

    No full text
    International audienc

    A new biomimetic assay reveals the temporal role of matrix stiffening in cancer cell invasion

    No full text
    International audienceTumor initiation and growth is associated with significant changes in the surrounding tissue. During carcinoma progression, a global stiffening of the extracellular matrix is observed and is interpreted as a signature of aggressive invasive tumors. However, it is still unknown whether this increase in matrix rigidity promotes invasion and whether this effect is constant along the course of invasion. Here we have developed a biomimetic in vitro assay that enabled us to address the question of the importance of tissue rigidity in the chronology of tumor invasion. Using low concentrations of the sugar threose, we can effectively stiffen reconstituted collagen I matrices and control the stiffening in time with no direct effect on residing cells. Our findings demonstrate that, depending on the timing of its stiffening, the extracellular matrix could either inhibit or promote cancer cell invasion and subsequent metastasis: while matrix stiffening after the onset of invasion promotes cancer cell migration and tumor spreading, stiff matrices encapsulate the tumor at an early stage and prevent cancer cell invasion. Our study suggests that adding a temporal dimension in in vitro models to analyze biological processes in four dimensions is necessary to fully capture their complexity

    Microfluidic-based generation of 3D collagen spheres to investigate multicellular spheroid invasion

    Get PDF
    Turizam je prisutan u Hrvatskoj više od jednog stoljeća. Masovnost i sezonalnost kao glavne karakteristike turizma hrvatske bilježe brojne negativne posljedice poput pritiska na okoliš, stanovnike i infrastrukturu. Zahvaljujući pogodnim geografskim i prirodnim obilježjima Hrvatska pripada skupini najatraktivnijih turstičkih destinacija Mediterana. Da bi i dalje zadržalja tu titulu, nužno je da se svi sudionici sustava pridržavaju politike održivog razvoja. Kroz rad se nastojala objasniti nužnost implementacije načela održivog turizma u turstičku politiku Hrvatske. U prvom dijelu rada je prikazan teorijski dio radi lakšeg shvaćanja termina održivosti dok se u drugom dijelu rada se navodi povezanost održivog razvoja sa turizmom, važnost implementiranja te primjeri dobre prakse u Hrvatskoj i svijetu.Tourism in Croatia has been present for more than a century. Mass and seasonality as a major characteristic of tourism in Croatia, has numerous negative consequences such as pressure on envirionmentl, inhabitants and infrastructure. Thanks to the favorable geographical and natural features, Croatia belongs to the group of the most attractive tourist destinations of the Mediterranean. To continue to retain that title, it is essential that all system participants adhere to sustainable development policies. The paper sought to explain the necessity of implementing the principle of sustainable tourism in Croatia's tourism policy. The first part of the paper presents a theoretical part for easier understanding of the terms of sustainability, while the second part mentions the link between sustainable development and tourism, the importance of implementation and examples of good practice in Croatia and the World

    Active cell migration is critical for steady-state epithelial turnover in the gut

    No full text
    International audienceSteady-state turnover is a hallmark of epithelial tissues throughout adult life. Intestinal epithelial turnover is marked by continuous cell migration, which is assumed to be driven by mitotic pressure from the crypts. However, the balance of forces in renewal remains ill-defined. Combining biophysical modeling and quantitative three-dimensional tissue imaging with genetic and physical manipulations, we revealed the existence of an actin-related protein 2/3 complex-dependent active migratory force, which explains quantitatively the profiles of cell speed, density, and tissue tension along the villi. Cells migrate collectively with minimal rearrangements while displaying dual-apicobasal and front-back-polarity characterized by actin-rich basal protrusions oriented in the direction of migration. We propose that active migration is a critical component of gut epithelial turnover

    Cancer cells in the tumor core exhibit spatially coordinated migration patterns

    No full text
    International audienceIn early stages of metastasis, cancer cells exit the primary tumor and enter the vasculature. Although most studies have focused on the tumor invasive front, cancer cells from the tumor core can also potentially metastasize. To address cell motility in the tumor core, we imaged tumor explants from spontaneously-forming tumors in real time using long-term two-photon microscopy. Cancer cells in the tumor core are remarkably dynamic and exhibit correlated migration patterns, giving rise to local "currents" and large-scale tissue dynamics. Although cells exhibit stop-and-start migration with intermittent pauses, pausing does not appear to be required during division. Use of pharmacological inhibitors indicates that migration patterns in tumors are actively driven by the actin cytoskeleton. Under these conditions, we also observed a relationship between migration speed and correlation length, suggesting that cells in tumors are near a jamming transition. Our study provides new insight into the dynamics of cancer cells in the tumor core, opening new avenues of research in understanding the migratory properties of cancer cells and later metastasis

    Active cell migration is critical for steady-state epithelial turnover in the gut

    No full text
    International audienceSteady-state turnover is a hallmark of epithelial tissues throughout adult life. Intestinal epithelial turnover is marked by continuous cell migration, which is assumed to be driven by mitotic pressure from the crypts. However, the balance of forces in renewal remains ill-defined. Combining biophysical modeling and quantitative three-dimensional tissue imaging with genetic and physical manipulations, we revealed the existence of an actin-related protein 2/3 complex-dependent active migratory force, which explains quantitatively the profiles of cell speed, density, and tissue tension along the villi. Cells migrate collectively with minimal rearrangements while displaying dual-apicobasal and front-back-polarity characterized by actin-rich basal protrusions oriented in the direction of migration. We propose that active migration is a critical component of gut epithelial turnover
    corecore