32 research outputs found
Caractérisation des performances du nouveau mini compteur de particules LOAC embarqué sous ballon météorologique : application à l’étude de la variabilité spatiale et temporelle des aérosols de la haute troposphère et de la stratosphère
The study of the stratospheric aerosols is important to our understanding of the terrestrial radiative budget. Our current comprehension of the different types of stratospheric particles and their spatial and temporal distribution is incomplete. In the present study, we try to show that measuring particle concentrations by the means of a new balloon-borne miniature particle counter, the LOAC, may allow us to determine the local variability in stratospheric aerosols in the size range 0.2 – 100 μm in diameter. In that respect, the PhD thesis consists of a first phase of a more accurate characterisation of the LOAC’s performances under balloon-borne measurement. A second phase consists of comparative analysis of stratospheric aerosol content based on a LOAC dataset obtained during a continuous campaign of balloon launches in France, along with some occasional flights abroad under particular circumstances (volcanic eruption, monsoon). Thus we show that the LOAC has a detection limit that restricts the measurement of submicronic particles in volcanic quiescent periods for concentrations lower than typically 1 particle per cm3. In its current version, the LOAC allows us to characterise aerosols in volcanic plumes in the troposphere and lower stratosphere. And, further, we propose directions concerning possible calibration and analysis strategies for the future data from the next generation of the LOAC currently in development.L’étude des aérosols stratosphériques est importante pour comprendre le bilan radiatif terrestre. A l’heure actuelle, notre représentation des différents types de particules stratosphériques et leurs répartitions spatiale et temporelle n’est pas complète. Au cours de cette thèse, nous tentons de montrer que la mesure de la concentration en particules sous ballon météorologique au moyen d’un nouveau mini compteur de particules, le LOAC, pourrait permettre de rendre compte de la possible variabilité locale du contenu en aérosols stratosphériques dans la gamme de taille 0,2 à 100 μm en diamètre. La première partie de ce travail consiste à caractériser plus précisément les performances du LOAC sous ballon météorologique appliqué à la mesure en stratosphère. La seconde partie propose une analyse comparée du contenu en aérosols stratosphériques obtenu par LOAC, à partir de lâchers de ballons en France régulièrement depuis 3 ans et plus ponctuellement à l’étranger dans des situations particulières (volcan, mousson), et par d’autres types de données (Observations spatiales, lidar sol et simulation globale). Nous montrons alors que l’instrument possède une limite de détection rendant difficile la mesure des particules submicroniques lors de période de fond en moyenne stratosphère pour des concentrations de l’ordre d’une particule par cm3. Dans sa version actuelle, le LOAC permet de documenter les panaches volcaniques en troposphère ainsi qu’en basse stratosphère. En perspective, nous proposons des directions pour la calibration et l’analyse des futures données d’une nouvelle génération de l’instrument en développement
Characterisation of the capabilities of the new balloon-borne miniature particulate counter LOAC : application to the study of spatial and temporal variability of aerosols in the upper troposphere and stratosphere
L’étude des aérosols stratosphériques est importante pour comprendre le bilan radiatif terrestre. A l’heure actuelle, notre représentation des différents types de particules stratosphériques et leurs répartitions spatiale et temporelle n’est pas complète. Au cours de cette thèse, nous tentons de montrer que la mesure de la concentration en particules sous ballon météorologique au moyen d’un nouveau mini compteur de particules, le LOAC, pourrait permettre de rendre compte de la possible variabilité locale du contenu en aérosols stratosphériques dans la gamme de taille 0,2 à 100 μm en diamètre. La première partie de ce travail consiste à caractériser plus précisément les performances du LOAC sous ballon météorologique appliqué à la mesure en stratosphère. La seconde partie propose une analyse comparée du contenu en aérosols stratosphériques obtenu par LOAC, à partir de lâchers de ballons en France régulièrement depuis 3 ans et plus ponctuellement à l’étranger dans des situations particulières (volcan, mousson), et par d’autres types de données (Observations spatiales, lidar sol et simulation globale). Nous montrons alors que l’instrument possède une limite de détection rendant difficile la mesure des particules submicroniques lors de période de fond en moyenne stratosphère pour des concentrations de l’ordre d’une particule par cm3. Dans sa version actuelle, le LOAC permet de documenter les panaches volcaniques en troposphère ainsi qu’en basse stratosphère. En perspective, nous proposons des directions pour la calibration et l’analyse des futures données d’une nouvelle génération de l’instrument en développement.The study of the stratospheric aerosols is important to our understanding of the terrestrial radiative budget. Our current comprehension of the different types of stratospheric particles and their spatial and temporal distribution is incomplete. In the present study, we try to show that measuring particle concentrations by the means of a new balloon-borne miniature particle counter, the LOAC, may allow us to determine the local variability in stratospheric aerosols in the size range 0.2 – 100 μm in diameter. In that respect, the PhD thesis consists of a first phase of a more accurate characterisation of the LOAC’s performances under balloon-borne measurement. A second phase consists of comparative analysis of stratospheric aerosol content based on a LOAC dataset obtained during a continuous campaign of balloon launches in France, along with some occasional flights abroad under particular circumstances (volcanic eruption, monsoon). Thus we show that the LOAC has a detection limit that restricts the measurement of submicronic particles in volcanic quiescent periods for concentrations lower than typically 1 particle per cm3. In its current version, the LOAC allows us to characterise aerosols in volcanic plumes in the troposphere and lower stratosphere. And, further, we propose directions concerning possible calibration and analysis strategies for the future data from the next generation of the LOAC currently in development
First results of tropospheric and stratospheric aerosols measurements during the Iceland Polar Vortex 2016 (IPV2016) campaign
International audienceThe Iceland Polar Vortex 2016 (IPV2016) campaign was carried out during the passage of the stratospheric polar vortex over Iceland in early January 2016. During the period 9-13 January, a total of four meteorological balloon sondes were sent into the stratosphere, carrying the Light Optical Aerosol Counter (LOAC) up to altitude of 26 km. LOAC provides concentrations, size distribution and typology of the aerosols in the 0.2 - 100 micrometer size range. The measurements show background liquid and solid aerosol concentrations greater than conventional values in the mid-latitude stratosphere. LOAC has detected layers of cirrus around the tropopause and has provided their size distribution in the 5 - 40 micrometre range. Liquid polar stratospheric cloud particles, greater than a few micrometre, were detected in the 12 - 24 km altitude range. Finally, abornmal high concentrations of submicronic carbonaceus particles were observed from the middle tropopshere to the middle stratosphere. The origin of all these particles will be tentatively interpreted using modelling calculation and backward trajectorie
First results of tropospheric and stratospheric aerosols measurements during the Iceland Polar Vortex 2016 (IPV2016) campaign
International audienceThe Iceland Polar Vortex 2016 (IPV2016) campaign was carried out during the passage of the stratospheric polar vortex over Iceland in early January 2016. During the period 9-13 January, a total of four meteorological balloon sondes were sent into the stratosphere, carrying the Light Optical Aerosol Counter (LOAC) up to altitude of 26 km. LOAC provides concentrations, size distribution and typology of the aerosols in the 0.2 - 100 micrometer size range. The measurements show background liquid and solid aerosol concentrations greater than conventional values in the mid-latitude stratosphere. LOAC has detected layers of cirrus around the tropopause and has provided their size distribution in the 5 - 40 micrometre range. Liquid polar stratospheric cloud particles, greater than a few micrometre, were detected in the 12 - 24 km altitude range. Finally, abornmal high concentrations of submicronic carbonaceus particles were observed from the middle tropopshere to the middle stratosphere. The origin of all these particles will be tentatively interpreted using modelling calculation and backward trajectorie
Characterization and corrections of relative humidity measurement from meteomodem M10 radiosondes at midlatitude stations
International audienceMeasurement of water vapor or humidity in the atmosphere is fundamental for many applications. Relative humidity measurements with a capacitive sensor in radiosondes are affected by several factors that need to be assessed and corrected. This work aims to address corrections for the main effects for the Meteomodem M10 radiosonde as a step to meet the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) requirements. The considered corrections are 1) the calibration correction; 2) a slow regime due to the slow diffusion of molecules through the sensor, especially at very high and very low relative humidity conditions; 3) the relative humidity sensor dependence on the gradient of temperature; and 4) the time lag at cold temperatures, which affects measurements in regions of strong relative humidity gradients. These corrections were tested for 26 nighttime and 25 daytime radiosondes in two midlatitude locations for which both Meteomodem M10 and Vaisala RS92 measurements were available. The results show that, after correcting for the four effects, M10 relative humidity measurements are, on average, consistent with the Vaisala RS92 relative humidity values within 2% RH at all altitudes for the nighttime launches (against 6% RH before the correction) and within 5% RH at all altitudes for the daytime launches (against 9% RH before the correction)
Iceland Polar Vortex 2016 campaign: Winter and high-altitude dust size distributions with the balloon-borne Light Optical Aerosol Counter (LOAC)
International audienceIceland has the largest area of volcaniclastic sandy desert on Earth where dust is originating from volcanic, but also glaciogenic sediments. Total Icelandic desert areas cover 44,000 km2 which makes Iceland the largest Arctic as well as European desert. The mean frequency of days with dust suspension was to 135 dust days annually in 1949-2011. The annual dust deposition was calculated as 31 - 40.1 million tons yr-1 affecting the area of > 500,000 km2. About 50% of the suspended PM10 are submicron particles. Icelandic dust is of volcanic origin; it is very dark in colour and contains sharp-tipped shards with bubbles. Such properties allow even large particles to be easily transported long distances as revealed on the satellite MODIS images with dust plumes traveling over 1000 km at times. There is a need to understand better the vertical distribution of such aerosols as well as their residence time in the atmosphere, especially during occasions such as polar vortex. Four LOAC flights were performed under meteorological balloons in Iceland in January 9-13 2016 when stratospheric polar vortex occurred above Iceland. LOAC is an optical aerosol counter that uses a new optical design to retrieve the size concentrations in 19 size classes between 0.2 and 100 micrometers, and to provide an estimate of the main nature of aerosols. Vertical profile of aerosol size distribution showed the presence of volcanic dust particles up to altitudes of 8 km for two of the flights (9-10 January). The MODIS satellite images confirmed a dust plume present above the southern coast from the deposits of September 2015 glacial outburst flood (jökulhlaup) while the rest of the country was covered by snow. These deposits had been actively suspended in November and December 2015. The ground PM10 mass concentration measurements in Reykjavik showed elevated PM measurements over 100 micrograms.m-3, confirming the particle presence 250 km far from the source. The number concentration exceeded 200 particles cm-3 at altitude of 1 km and 60 particles cm-3 at altitude of 5 km, which is at least 5 times higher than during background conditions. The particles were 1 km while largest particles, up to 20 micrometers, were detected close to the ground. Such high number concentrations in several km height were captured by LOAC during a typical Saharan dust plume. On the other hand, aircraft measurements of winter dust storm in 2007 with an aerosol spectrometer (0.1-3 micrometers) detected only 30-50 particles per cm3 in altitude 1900 m. Our results show that fine volcanic glacially reworked dust can reach high altitudes relatively close to the dust source and reside in terms of days under winter atmospheric conditions. The remaining question is the further transport of these high altitude particles outside Iceland
Vertical distribution of aerosols in dust storms during the Arctic winter
International audienceHigh Latitude Dust (HLD) contributes 5% to the global dust budget, but HLD measurements are sparse. Iceland has the largest area of volcaniclastic sandy desert on Earth where dust is originating from volcanic, but also glaciogenic sediments. Total Icelandic desert areas cover 44,000 km2 which makes Iceland the largest Arctic as well as European desert. Icelandic volcanic dust can be transported distances > 1700 km towards the Arctic and deposited on snow, ice and sea ice. It is estimated that about 7% of Icelandic dust can reach the high Arctic (N>80°). It is known that about 50% of Icelandic dust storms occurred during winter or subzero temperatures in the southern part of Iceland. The vertical distributions of dust aerosol in high atmospheric profiles during these winter storms and long-range transport of dust during polar vortex condition were unknown.Dust observations from Iceland provide dust aerosol distributions during the Arctic winter for the first time, profiling dust storms as well as clean air conditions. Five winter dust storms were captured during harsh conditions. Mean number concentrations during the non-dust flights were 40 particles cm-3 during dust storms. A moderate dust storm with > 250 particles cm-3 (2 km altitude) was captured on 10th January 2016 as a result of sediments suspended from glacial outburst flood Skaftahlaup in 2015. Similar particle number concentrations were reported previously in the Saharan air layer. Detected particle sizes were up to 20 µm close to the surface, up to 10 µm at 900 m altitude, up to 5 µm at 5 km altitude, and submicron at altitudes > 6 km.Dust sources in the Arctic are active during the winter and produce large amounts of particulate matter dispersed over long distances and high altitudes. HLD contributes to Arctic air pollution and has the potential to influence ice nucleation in mixed-phase clouds and Arctic amplification. Reference:Dagsson-Waldhauserova, P., Renard, J.-B., Olafsson, H., Vignelles, D., Berthet, G., Verdier, N., Duverger, V., 2019. Vertical distribution of aerosols in dust storms during the Arctic winter. Scientific Reports 6, 1-11
Iceland Polar Vortex 2016 campaign: Winter and high-altitude dust size distributions with the balloon-borne Light Optical Aerosol Counter (LOAC)
International audienceIceland has the largest area of volcaniclastic sandy desert on Earth where dust is originating from volcanic, but also glaciogenic sediments. Total Icelandic desert areas cover 44,000 km2 which makes Iceland the largest Arctic as well as European desert. The mean frequency of days with dust suspension was to 135 dust days annually in 1949-2011. The annual dust deposition was calculated as 31 - 40.1 million tons yr-1 affecting the area of > 500,000 km2. About 50% of the suspended PM10 are submicron particles. Icelandic dust is of volcanic origin; it is very dark in colour and contains sharp-tipped shards with bubbles. Such properties allow even large particles to be easily transported long distances as revealed on the satellite MODIS images with dust plumes traveling over 1000 km at times. There is a need to understand better the vertical distribution of such aerosols as well as their residence time in the atmosphere, especially during occasions such as polar vortex. Four LOAC flights were performed under meteorological balloons in Iceland in January 9-13 2016 when stratospheric polar vortex occurred above Iceland. LOAC is an optical aerosol counter that uses a new optical design to retrieve the size concentrations in 19 size classes between 0.2 and 100 micrometers, and to provide an estimate of the main nature of aerosols. Vertical profile of aerosol size distribution showed the presence of volcanic dust particles up to altitudes of 8 km for two of the flights (9-10 January). The MODIS satellite images confirmed a dust plume present above the southern coast from the deposits of September 2015 glacial outburst flood (jökulhlaup) while the rest of the country was covered by snow. These deposits had been actively suspended in November and December 2015. The ground PM10 mass concentration measurements in Reykjavik showed elevated PM measurements over 100 micrograms.m-3, confirming the particle presence 250 km far from the source. The number concentration exceeded 200 particles cm-3 at altitude of 1 km and 60 particles cm-3 at altitude of 5 km, which is at least 5 times higher than during background conditions. The particles were 1 km while largest particles, up to 20 micrometers, were detected close to the ground. Such high number concentrations in several km height were captured by LOAC during a typical Saharan dust plume. On the other hand, aircraft measurements of winter dust storm in 2007 with an aerosol spectrometer (0.1-3 micrometers) detected only 30-50 particles per cm3 in altitude 1900 m. Our results show that fine volcanic glacially reworked dust can reach high altitudes relatively close to the dust source and reside in terms of days under winter atmospheric conditions. The remaining question is the further transport of these high altitude particles outside Iceland
Gravity-wave effects on tracer gases and stratospheric aerosol concentrations during the 2013 ChArMEx campaign
International audienceCoupled balloon-borne observations of Light Optical Aerosol Counter (LOAC), M10 meteorological global positioning system (GPS) sondes, ozonesondes, and GPS radio occultation data, are examined to identify gravity-wave (GW)-induced fluctuations on tracer gases and on the vertical distribution of stratospheric aerosol concentrations during the 2013 ChArMEx (Chemistry-Aerosol Mediterranean Experiment) campaign. Observations reveal signatures of GWs with short vertical wavelengths less than 4 km in dynamical parameters and tracer constituents, which are also correlated with the presence of thin layers of strong local enhancements of aerosol concentrations in the upper troposphere and the lower stratosphere. In particular, this is evident from a case study above Ile du Levant (43.02° N, 6.46° E) on 26–29 July 2013. Observations show a strong activity of dominant mesoscale inertia GWs with horizontal and vertical wavelengths of 370–510 km and 2–3 km respectively, and periods of 10–13 h propagating southward at altitudes of 13–20 km during 27–28 July. The European Centre for Medium-Range Weather Forecasts (ECMWF) analyses also show evidence of mesoscale inertia GWs with similar horizontal characteristics above the eastern part of France. Ray-tracing experiments indicate the jet-front system as the main source of observed GWs. Using a simplified linear GW theory, synthetic vertical profiles of dynamical parameters with large stratospheric vertical wind maximum oscillations of ±40 mms−1 are produced for the dominant mesoscale GW observed at heights of 13–20 km. Parcel advection method reveals signatures of GWs in the ozone mixing ratio and the tropospheric-specific humidity. Simulated vertical wind perturbations of the dominant GWs and small-scale perturbations of aerosol concentration (aerosol size of 0.2–0.7 µm) are revealed to be in phase in the lower stratosphere. Present results support the importance of vertical wind perturbations in the GW–aerosol relationship. Observed mesoscale GWs induce a strong modulation of the amplitude of tracer gases and the stratospheric aerosol background
Vertical distribution of aerosols in dust storms during the Arctic winter
International audienceHigh Latitude Dust (HLD) contributes 5% to the global dust budget, but HLD measurements are sparse. Dust observations from Iceland provide dust aerosol distributions during the Arctic winter for the first time, profiling dust storms as well as clean air conditions. Five winter dust storms were captured during harsh conditions. Mean number concentrations during the non-dust flights were 40 particles cm −3 during dust storms. A moderate dust storm with >250 particles cm −3 (2 km altitude) was captured on 10 th January 2016 as a result of sediments suspended from glacial outburst flood Skaftahlaup in 2015. Similar concentrations were reported previously in the Saharan air layer. Detected particle sizes were up to 20 µm close to the surface, up to 10 µm at 900 m altitude, up to 5 µm at 5 km altitude, and submicron at altitudes >6 km. Dust sources in the Arctic are active during the winter and produce large amounts of particulate matter dispersed over long distances and high altitudes. HLD contributes to Arctic air pollution and has the potential to influence ice nucleation in mixed-phase clouds and Arctic amplification. The Arctic surface atmosphere has undergone radical changes in past decades resulting in at least two times larger warming (~1.5 °C) than the global mean temperature change. Such Arctic warming, often referred to as Arctic amplification, is attributed to greenhouse gas feedback while short-lived aerosols act as important forcing agents as well 1-4. The most radiation absorbing aerosols known in the Arctic atmosphere are black carbon and dark-coloured dust, but they have been also identified as strong light absorbing impurities when deposited on snow or ice 1,5-11. Although the direct radiative forcing of aerosols in the Arctic atmosphere is estimated to be larger than indirect radiative forcing via snow feedback, early snow cover removal can result in comparatively larger climate effects 12. The seasonality of high aerosol loadings in the Arctic is typically bimodal, with one major peak in late winter/spring and the secondary peak in autumn 3,13. The origin of absorbing particles is mostly attributed to long-range transport from outside of the Arctic. However, within the Arctic region there are large areas where the terrain serves as sources of dust that impact high latitudes 14,15. We refer to these as High Latitude Dust sources (HLD). The first estimates are that all HLD sources cover >500,000 km 2 and contribute to at least 5% of the global dust budget 14. Iceland is the largest Arctic as well as European desert, comprised of volcanic and glacio-volcanic sediments, with high dust event frequency (>135 dust days annually) and year round occurrence 14,16-19. Icelandic volcanic dust can be transported distances over 1000 km and it can affect large Arctic glaciated and sea areas due to its deposition on snow, ice and sea ice 9,17,20-25. Direct aerosol measurements in Iceland have shown high Particulate Matter (PM) mass and number concentrations during dust storms in situ 22,26-28 and on board of the aircraft 29. Snow-dust storms (when dust is mixed with snow during a dust storm or deposited on snow) and some of the most extreme wind erosion events recorded on Earth have been observed and measured in Iceland, the most active HLD source in the Arctic 14,17,28,30,31. Measurement of the vertical distribution of aerosols is crucial for understanding the physical properties of tropospheric Arctic aerosols. However, scientific studies of airborne measurements of aerosol distribution in the Arctic are rare. Reported direct aerosol concentration measurements in vertical atmospheric profiles in the Arctic are limited to spring/summer season and low altitude of atmospheric profile (altitude ~2 km in Laakso et al. 32 , <3 km in Bates et al. 33 , <1 km in Moroni et al. 34 , and ~1 km in Ferrero et al. 35). Winter direct measurements of Arctic aerosol profiles for the whole troposphere column in addition to the presence of the polar vortex are scarce due t