569 research outputs found
FGFR2 amplification in colorectal adenocarcinoma
FGFR2 is recurrently amplified in 5% of gastric cancers and 1%–4% of breast cancers; however, this molecular alteration has never been reported in a primary colorectal cancer specimen. Preclinical studies indicate that several FGFR tyrosine-kinase inhibitors (TKIs), such as AZD4547, have in vitro activity against the FGFR2-amplified colorectal cell line, NCI-H716. The efficacy of these inhibitors is currently under investigation in clinical trials for breast and gastric cancer. Thus, better characterizing colorectal tumors for FGFR2 amplification could identify a subset of patients who may benefit from FGFR TKI therapies. Here, we describe a novel FGFR2 amplification identified by clinical next-generation sequencing in a primary colorectal cancer. Further characterization of the tumor by immunohistochemistry showed neuroendocrine differentiation, similar to the reported properties of the NCI-H716 cell line. These findings demonstrate that the spectrum of potentially clinically actionable mutations detected by targeted clinical sequencing panels is not limited to only single-nucleotide polymorphisms and insertions/deletions but also to copy-number alterations.</jats:p
A Protein Allergen Microarray Detects Specific IgE to Pollen Surface, Cytoplasmic, and Commercial Allergen Extracts
Current diagnostics for allergies, such as skin prick and radioallergosorbent tests, do not allow for inexpensive, high-throughput screening of patients. Additionally, extracts used in these methods are made from washed pollen that lacks pollen surface materials that may contain allergens.We sought to develop a high-throughput assay to rapidly measure allergen-specific IgE in sera and to explore the relative allergenicity of different pollen fractions (i.e. surface, cytoplasmic, commercial extracts). To do this, we generated a protein microarray containing surface, cytoplasmic, and commercial extracts from 22 pollen species, commercial extracts from nine non-pollen allergens, and five recombinant allergenic proteins. Pollen surface and cytoplasmic fractions were prepared by extraction into organic solvents and aqueous buffers, respectively. Arrays were incubated with <25 uL of serum from 176 individuals and bound IgE was detected by indirect immunofluorescence, providing a high-throughput measurement of IgE. We demonstrated that the allergen microarray is a reproducible method to measure allergen-specific IgE in small amounts of sera. Using this tool, we demonstrated that specific IgE clusters according to the phylogeny of the allergen source. We also showed that the pollen surface, which has been largely overlooked in the past, contained potent allergens. Although, as a class, cytoplasmic fractions obtained by our pulverization/precipitation method were comparable to commercial extracts, many individual allergens showed significant differences.These results support the hypothesis that protein microarray technology is a useful tool for both research and in the clinic. It could provide a more efficient and less painful alternative to traditionally used skin prick tests, making it economically feasible to compare allergen sensitivity of different populations, monitor individual responses over time, and facilitate genetic studies on pollen allergy
An adjustable law of motion for relativistic spherical shells
A classical and a relativistic law of motion for an advancing shell are
deduced applying the thin layer approximation. A new parameter connected with
the quantity of absorbed matter in the expansion is introduced; this allows of
matching theory and observation.Comment: 15 pages, 10 figures and article in press; Central European Journal
of Physics 201
The significance of lipid composition for membrane activity: new concepts and ways of assessing function
In the last decade or so, it has been realised that membranes do not just have a lipid-bilayer structure in which proteins
are embedded or with which they associate. Structures are dynamic and contain areas of heterogeneity which are vital for
their formation. In this review, we discuss some of the ways in which these dynamic and heterogeneous structures have
implications during stress and in relation to certain human diseases. A particular stress is that of temperature which
may instigate adaptation in poikilotherms or appropriate defensive responses during fever in mammals. Recent data
emphasise the role of membranes in sensing temperature changes and in controlling a regulatory loop with chaperone proteins.
This loop seems to need the existence of specific membrane microdomains and also includes association of chaperone
(heat stress) proteins with the membrane. The role of microdomains is then discussed further in relation to various human
pathologies such as cardiovascular disease, cancer and neurodegenerative diseases. The concept of modifying membrane
lipids (lipid therapy) as a means for treating such pathologies is then introduced. Examples are given when such methods
have been shown to have benefit.
In order to study membrane microheterogeneity in detail and to elucidate possible molecular mechanisms that account
for alteration in membrane function, new methods are needed. In the second part of the review, we discuss ultra-sensitive
and ultra-resolution imaging techniques. These include atomic force microscopy, single particle tracking, single particle
tracing and various modern fluorescence methods. Finally, we deal with computing simulation of membrane systems. Such
methods include coarse-grain techniques and Monte Carlo which offer further advances into molecular dynamics. As computational
methods advance they will have more application by revealing the very subtle interactions that take place
between the lipid and protein components of membranes – and which are so essential to their function
Nanofibrous solid dosage form of living bacteria prepared by electrospinning
The aim of this work was to investigate the suitability of electrospinning for biodrug delivery and to develop an electrospinning-based method to produce vaginal drug delivery systems. Lactobacillus acidophilus bacteria were encapsulated into nanofibers of three different polymers (polyvinyl alcohol and polyvinylpyrrolidone with two different molar masses). Shelf life of the bacteria could be enhanced by the exclusion of water and by preparing a solid dosage form, which is an advantageous and patient-friendly way of administration. The formulations were stored at –20, 7 and 25°C, respectively. Viability testing showed that the nanofibers can provide long term stability for huge amounts of living bacteria if they are kept at (or below) 7°C. Furthermore, all kinds of nanowebs prepared in this work dissolved instantly when they got in contact with water, thus the developed biohybrid nanowebs can provide new potential ways for curing bacterial vaginosis
Neuroinflammatory processes are augmented in mice overexpressing human heat-shock protein B1 following ethanol-induced brain injury
Background: Heat-shock protein B1 (HSPB1) is among the most well-known and versatile member of the evolutionarily conserved family of small heat-shock proteins. It has been implicated to serve a neuroprotective role against various neurological disorders via its modulatory activity on inflammation, yet its exact role in neuroinflammation is poorly understood. In order to shed light on the exact mechanism of inflammation modulation by HSPB1, we investigated the effect of HSPB1 on neuroinflammatory processes in an in vivo and in vitro model of acute brain injury. Methods: In this study, we used a transgenic mouse strain overexpressing the human HSPB1 protein. In the in vivo experiments, 7-day-old transgenic and wild-type mice were treated with ethanol. Apoptotic cells were detected using TUNEL assay. The mRNA and protein levels of cytokines and glial cell markers were examined using RT-PCR and immunohistochemistry in the brain. We also established primary neuronal, astrocyte, and microglial cultures which were subjected to cytokine and ethanol treatments. TNF alpha and hHSPB1 levels were measured from the supernates by ELISA, and intracellular hHSPB1 expression was analyzed using fluorescent immunohistochemistry. Results: Following ethanol treatment, the brains of hHSPB1-overexpressing mice showed a significantly higher mRNA level of pro-inflammatory cytokines (Tnf, Il1b), microglia (Cd68, Arg1), and astrocyte (Gfap) markers compared to wild-type brains. Microglial activation, and 1 week later, reactive astrogliosis was higher in certain brain areas of ethanol-treated transgenic mice compared to those of wild-types. Despite the remarkably high expression of pro-apoptotic Tnf, hHSPB1-overexpressing mice did not exhibit higher level of apoptosis. Our data suggest that intracellular hHSPB1, showing the highest level in primary astrocytes, was responsible for the inflammation-regulating effects. Microglia cells were the main source of TNF alpha in our model. Microglia isolated from hHSPB1-overexpressing mice showed a significantly higher release of TNF alpha compared to wild-type cells under inflammatory conditions. Conclusions; Our work provides novel in vivo evidence that hHSPB1 overexpression has a regulating effect on acute neuroinflammation by intensifying the expression of pro-inflammatory cytokines and enhancing glial cell activation, but not increasing neuronal apoptosis. These results suggest that hHSPB1 may play a complex role in the modulation of the ethanol-induced neuroinflammatory response.Peer reviewe
Membrane fluidity matters: Hyperthermia from the aspects of lipids and membranes
Hyperthermia is a promising treatment modality for cancer in combination both with radio- and chemotherapy. In spite of its great therapeutic potential, the underlying molecular mechanisms still remain to be clarified. Due to lipid imbalances and 'membrane defects' most of the tumour cells possess elevated membrane fluidity. However, further increasing membrane fluidity to sensitise to chemo-or radiotherapy could have some other effects. In fact, hyperfluidisation of cell membrane induced by membrane fluidiser initiates a stress response as the heat shock protein response, which may modulate positively or negatively apoptotic cell death. Overviewing some recent findings based on a technology allowing direct imaging of lipid rafts in live cells and lipidomics, novel aspects of the intimate relationship between the 'membrane stress' of tumour cells and the cellular heat shock response will be highlighted. Our findings lend support to both the importance of membrane remodelling and the release of lipid signals initiating stress protein response, which can operate in tandem to control the extent of the ultimate cellular thermosensitivity. Overall, we suggest that the fluidity variable of membranes should be used as an independent factor for predicting the efficacy of combinational cancer therapies
- …